A Two-Variable Artin Conjecture
暂无分享,去创建一个
[1] Pieter Moree,et al. Approximation of singular series and automata , 2000 .
[2] Pieter Moree,et al. Prime divisors of the Lagarias sequence , 1999, math/9912253.
[3] Eric Bach,et al. The Complexity of Number-Theoretic Constants , 1997, Inf. Process. Lett..
[4] D. R. Heath-Brown. ARTIN'S CONJECTURE FOR PRIMITIVE ROOTS , 1986 .
[5] J. Lagarias. The set of primes dividing the Lucas numbers has density 2∕3 , 1985 .
[6] H. Lenstra,et al. On Artin's conjecture and Euclid's algorithm in global fields , 1977 .
[7] P. Stephens. Prime divisors of second-order linear recurrences. I , 1976 .
[8] G. Pólya,et al. Aufgaben und Lehrsätze aus der Analysis , 1926, The Mathematical Gazette.
[9] P. Stevenhagen,et al. Prime divisors of Lucas sequences , 1997 .
[10] Francesco Pappalardi,et al. On Artin's Conjecture for Primitive Roots , 1993 .
[11] C. Ballot. Density of prime divisors in linear-recurring sequences. , 1992 .
[12] Samuel S. Wagstaff,et al. Pseudoprimes and a generalization of Artin's conjecture , 1982 .
[13] C. Hooley. On Artin's conjecture. , 1967 .
[14] W. E. H. B.,et al. Aufgaben und Lehrsätze aus der Analysis. , 1925, Nature.
[15] G. Pólya,et al. Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. , 1921 .