Rough sets and boolean reasoning

In recent years we witness a rapid growth of interest in rough set theory and its applications, worldwide. The theory has been followed by the development of several software systems that implement rough set operations, in particular for solving knowledge discovery and data mining tasks. Rough sets are applied in domains, such as, for instance, medicine, finance, telecommunication, vibration analysis, conflict resolution, intelligent agents, pattern recognition, control theory, signal analysis, process industry, marketing, etc.We introduce basic notions and discuss methodologies for analyzing data and surveys some applications. In particular we present applications of rough set methods for feature selection, feature extraction, discovery of patterns and their applications for decomposition of large data tables as well as the relationship of rough sets with association rules. Boolean reasoning is crucial for all the discussed methods.We also present an overview of some extensions of the classical rough set approach. Among them is rough mereology developed as a tool for synthesis of objects satisfying a given specification in a satisfactory degree. Applications of rough mereology in such areas like granular computing, spatial reasoning and data mining in distributed environment are outlined.

[1]  Z. Pawlak,et al.  Rough sets and rough logic: a KDD perspective , 2000 .

[2]  Salvatore Greco,et al.  Fuzzy Similarity Relation as a Basis for Rough Approximations , 1998, Rough Sets and Current Trends in Computing.

[3]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[4]  Zbigniew W. Ras,et al.  Cooperative Knowledge-Based Systems , 1996, Intell. Autom. Soft Comput..

[5]  Tsau Young Lin,et al.  Granular Computing on Binary Relations , 2002, Rough Sets and Current Trends in Computing.

[6]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[7]  Hung Son Nguyen,et al.  From Optimal Hyperplanes to Optimal Decision Trees , 1998, Fundam. Informaticae.

[8]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[9]  Andrzej Skowron,et al.  An Application of Rough Set Methods in Control Design , 2000, Fundam. Informaticae.

[10]  S. Tsumoto,et al.  Rough set methods and applications: new developments in knowledge discovery in information systems , 2000 .

[11]  Andrzej Czyzewski,et al.  Soft Processing of Audio Signals , 1998 .

[12]  Daijin Kim,et al.  Data classification based on tolerant rough set , 2001, Pattern Recognit..

[13]  Shusaku Tsumoto,et al.  Information Granules for Spatial Reasoning , 2001, PAKDD.

[14]  A. Skowron,et al.  Towards adaptive calculus of granules , 1998 .

[15]  Rafal Latkowski On Decomposition for Incomplete Data , 2003, Fundam. Informaticae.

[16]  Jerzy W. Grzymala-Busse Selected Algorithms of Machine Learning from Examples , 1993, Fundam. Informaticae.

[17]  John L. Casti,et al.  Alternate Realities: Mathematical Models of Nature and Man , 1989 .

[18]  Dominik Slezak,et al.  Approximate Reducts and Association Rules - Correspondence and Complexity Results , 1999, RSFDGrC.

[19]  Wojciech Ziarko,et al.  Rough Sets and Knowledge Discovery: An Overview , 1993, RSKD.

[20]  Andrzej Skowron,et al.  Parallel Communicating Grammar Systems with Negotiation , 1996, Fundam. Informaticae.

[21]  Victor W. Marek,et al.  Contributions to the Theory of Rough Sets , 1999, Fundam. Informaticae.

[22]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[23]  XIAOHUA Hu,et al.  LEARNING IN RELATIONAL DATABASES: A ROUGH SET APPROACH , 1995, Comput. Intell..

[24]  Dominik Slezak,et al.  Approximate Entropy Reducts , 2002, Fundam. Informaticae.

[25]  Pawan Lingras,et al.  Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing , 2001, Neurocomputing.

[26]  R. Słowiński,et al.  Learning Decision Rules from Similarity Based Rough Approximations , 1998 .

[27]  Andrzej Skowron,et al.  Synthesis of Adaptive Decision Systems from Experimental Data , 1995, SCAI.

[28]  S. Greco,et al.  Rough Approximation of a Preference Relation in a Pairwise Comparison Table , 1998 .

[29]  Hung Son Nguyen,et al.  On Efficient Handling of Continuous Attributes in Large Data Bases , 2001, Fundam. Informaticae.

[30]  Sinh Hoa Nguyen,et al.  Pattern Extraction from Data , 1998, Fundam. Informaticae.

[31]  Mohamed Quafafou,et al.  Generalized rough sets based feature selection , 2000, Intell. Data Anal..

[32]  J. Stepaniuk Approximation Spaces, Reducts and Representatives , 1998 .

[33]  Sankar K. Pal,et al.  Fuzzy discretization of feature space for a rough set classifier , 2003, Pattern Recognit. Lett..

[34]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[35]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[36]  Marcin S. Szczuka,et al.  RSES and RSESlib - A Collection of Tools for Rough Set Computations , 2000, Rough Sets and Current Trends in Computing.

[37]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[38]  Ivo Düntsch,et al.  Rough approximation quality revisited , 2001, Artif. Intell..

[39]  Sankar K. Pal,et al.  Modular Rough Fuzzy MLP: Evolutionary Design , 1999, RSFDGrC.

[40]  Marzena Kryszkiewicz,et al.  Computation of Reducts of Composed Information Systems , 1996, Fundam. Informaticae.

[41]  Andrzej Skowron,et al.  Rough Sets in Knowledge Discovery 2: Applications, Case Studies, and Software Systems , 1998 .

[42]  Wojciech Ziarko,et al.  An Incremental Learning Algorithm for Constructing Decision Rules , 1993, RSKD.

[43]  Sankar K. Pal,et al.  Non-convex clustering using expectation maximization algorithm with rough set initialization , 2003, Pattern Recognit. Lett..

[44]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[45]  Jakub Wroblewski,et al.  Theoretical Foundations of Order-Based Genetic Algorithms , 1996, Fundam. Informaticae.

[46]  Vijay V. Raghavan,et al.  Data Mining: Trends in Research and Development , 1997 .

[47]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[48]  P. Swingle,et al.  The structure of conflict , 1970 .

[49]  Jerzy W. Grzymala-Busse,et al.  Data mining and rough set theory , 2000, CACM.

[50]  Andrzej Skowron,et al.  Rough Mereological Foundatins for Design, Analysis, Synthesis, and Control in Distributed Systems , 1998, Inf. Sci..

[51]  Witold Pedrycz,et al.  Classification of meteorological volumetric radar data using rough set methods , 2003, Pattern Recognit. Lett..

[52]  Z. Pawlak,et al.  Rough sets perspective on data and knowledge , 2002 .

[53]  Bart Selman,et al.  Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.

[54]  Vijay V. Raghavan,et al.  A comparison of feature selection algorithms in the context of rough classifiers , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[55]  Jan G. Bazan,et al.  Rough set algorithms in classification problem , 2000 .

[56]  Andrzej Skowron,et al.  Boolean Reasoning Scheme with Some Applications in Data Mining , 1999, PKDD.

[57]  Jan Komorowski,et al.  Taming Large Rule Models in Rough Set Approaches , 1999, PKDD.

[58]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[59]  Ivo Düntsch,et al.  Statistical evaluation of rough set dependency analysis , 1997, Int. J. Hum. Comput. Stud..

[60]  Dominik Ślęzak,et al.  Various approaches to reasoning with frequency based decision reducts: a survey , 2000 .

[61]  Mohamed Quafafou,et al.  Concept Learning with Approximation: Rough Version Spaces , 2002, Rough Sets and Current Trends in Computing.

[62]  Andrzej Skowron,et al.  Rough set methods in feature selection and recognition , 2003, Pattern Recognit. Lett..

[63]  Roman W. Swiniarski,et al.  An Application of Rough Sets and Haar Wavelets to Face Recognition , 2000, Rough Sets and Current Trends in Computing.

[64]  Ron Kohavi,et al.  Lazy Decision Trees , 1996, AAAI/IAAI, Vol. 1.

[65]  Hung Son Nguyen,et al.  Efficient SQL-Querying Method for Data Mining in Large Data Bases , 1999, IJCAI.

[66]  Marzena Kryszkiewicz,et al.  Generation of Rules from Incomplete Information Systems , 1997, PKDD.

[67]  Jarosław Stepaniuk,et al.  Knowledge discovery by application of rough set models , 2000 .

[68]  Raúl E. Valdés-Pérez,et al.  Discovery tools for science apps , 1999, Commun. ACM.

[69]  Huanglin Zeng,et al.  A New Halftoning Method Based on Error Diffusion with Rough Set Filtering , 1998 .

[70]  J. Kacprzyk,et al.  How different are social choice functions: a rough sets approach , 1996, Quality and Quantity.

[71]  Jerzy W. Grzymala-Busse,et al.  Classification of Unseen Examples Under Uncertainty , 1997, Fundam. Informaticae.

[72]  Zbigniew Suraj,et al.  Rough set methods for the synthesis and analysis of concurrent processes , 2000 .

[73]  Hiroshi Tanaka,et al.  PRIMEROSE: PROBABILISTIC RULE INDUCTION METHOD BASED ON ROUGH SETS AND RESAMPLING METHODS , 1995, Comput. Intell..

[74]  John F. Roddick,et al.  A bibliography of temporal, spatial and spatio-temporal data mining research , 1999, SKDD.

[75]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[76]  Daijin Kim,et al.  A Handwritten Numeral Character Classification Using Tolerant Rough Set , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Andrzej Skowron,et al.  Adaptive Decision-Making by Systems of Cooperating Intelligent Agents Organized on Rough Mereological Principles , 1996, Intell. Autom. Soft Comput..

[78]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[79]  J. Kacprzyk,et al.  Probabilistic, fuzzy and rough concepts in social choice , 1996 .

[80]  Sinh Hoa Nguyen,et al.  Regularity analysis and its applications in data mining , 2000 .

[81]  Andrzej Skowron,et al.  Discovery of Data Patterns with Applications to Decomposition and Classification Problems , 1998 .

[82]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[83]  Xiaohua Hu,et al.  Discovering Maximal Generalized Decision Rules Through Horizontal and Vertical Data Reduction , 2001, Comput. Intell..

[84]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[85]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[86]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[87]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[88]  Herbert A. Simon,et al.  Scientific discovery: compulalional explorations of the creative process , 1987 .

[89]  Jerzy W. Grzymala-Busse,et al.  Global discretization of continuous attributes as preprocessing for machine learning , 1996, Int. J. Approx. Reason..

[90]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[91]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[92]  Zdzislaw Pawlak,et al.  An Inquiry into Anatomy of Conflicts , 1998, Inf. Sci..

[93]  Shusaku Tsumoto,et al.  Modelling Medical Diagnostic Rules Based on Rough Sets , 1998, Rough Sets and Current Trends in Computing.

[94]  Sankar K. Pal,et al.  Roughness of a Fuzzy Set , 1996, Inf. Sci..

[95]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[96]  Andrzej Skowron,et al.  On some conflict models and conflict resolution , 2002 .

[97]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[98]  Andrzej Skowron,et al.  Rough Set Approach to the Survival Analysis , 2002, Rough Sets and Current Trends in Computing.

[99]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[100]  David G. Stork,et al.  Pattern Classification , 1973 .

[101]  Yutaka Maeda,et al.  Interval Density Functions in Conflict Analysis , 1999, RSFDGrC.

[102]  Andrzej Skowron,et al.  Rough mereology in information systems. A case study: qualitative spatial reasoning , 2000 .

[103]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[104]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[105]  Sinh Hoa Nguyen,et al.  Rough Sets and Association Rule Generation , 1999, Fundam. Informaticae.

[106]  Arkadiusz Wojna,et al.  RIONA: A New Classification System Combining Rule Induction and Instance-Based Learning , 2002, Fundam. Informaticae.

[107]  Andrzej Skowron,et al.  Rough set rudiments , 1995 .