Efficient quantum circuits for Szegedy quantum walks
暂无分享,去创建一个
J. B. Wang | T. Loke | T. Loke
[1] A. Hora,et al. Distance-Regular Graphs , 2007 .
[2] Andrew M. Childs,et al. Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.
[3] E. Farhi,et al. Quantum computation and decision trees , 1997, quant-ph/9706062.
[4] Frédéric Magniez,et al. Search via quantum walk , 2006, STOC '07.
[5] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[6] S. D. Berry,et al. Two-particle quantum walks: Entanglement and graph isomorphism testing , 2011 .
[7] M. Szegedy,et al. Quantum Walk Based Search Algorithms , 2008, TAMC.
[8] Maris Ozols,et al. Quantum Walks Can Find a Marked Element on Any Graph , 2010, Algorithmica.
[9] Andrew M. Childs,et al. Limitations on the simulation of non-sparse Hamiltonians , 2009, Quantum Inf. Comput..
[10] E. Sampathkumar. On tensor product graphs , 1975 .
[11] Guoming Wang. Quantum algorithms for approximating the effective resistances of electrical networks , 2013, ArXiv.
[12] Lov K. Grover,et al. Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.
[13] John Watrous,et al. Continuous-Time Quantum Walks on the Symmetric Group , 2003, RANDOM-APPROX.
[14] Andrew M. Childs,et al. Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.
[15] Ashley Montanaro,et al. Efficient quantum walk on a quantum processor , 2015, Nature Communications.
[16] Kurt Bryan,et al. The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..
[17] Pawel Wocjan,et al. Efficient circuits for quantum walks , 2009, Quantum Inf. Comput..
[18] Andrew M. Childs,et al. Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..
[19] Michael Small,et al. Comparing classical and quantum PageRanks , 2015, Quantum Inf. Process..
[20] Hans-J. Briegel,et al. Quantum mixing of Markov chains for special distributions , 2015, ArXiv.
[21] Christof Zalka. Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[22] J. B. Wang,et al. A classical approach to the graph isomorphism problem using quantum walks , 2007, 0705.2531.
[23] Frédéric Magniez,et al. On the Hitting Times of Quantum Versus Random Walks , 2008, Algorithmica.
[24] Frédéric Magniez,et al. Quantum Complexity of Testing Group Commutativity , 2005, Algorithmica.
[25] Miguel-Angel Martin-Delgado,et al. Google in a Quantum Network , 2011, Scientific Reports.
[26] P. Wocjan,et al. Efficient quantum circuits for arbitrary sparse unitaries , 2009, 0904.2211.
[27] Michele Mosca,et al. Quantum Networks for Generating Arbitrary Quantum States , 2001, OFC 2001.
[28] Will Flanagan,et al. Controlling discrete quantum walks: coins and initial states , 2003 .
[29] Andrew M. Childs,et al. Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[30] Daniel A. Spielman,et al. Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.
[31] Miguel-Angel Martin-Delgado,et al. Quantum Google in a Complex Network , 2013, Scientific Reports.
[32] Harry Buhrman,et al. Quantum verification of matrix products , 2004, SODA '06.
[33] Christof Zalka,et al. Efficient Simulation of Quantum Systems by Quantum Computers , 1998 .
[34] Dong Zhou,et al. Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.
[35] T. Loke,et al. Efficient circuit implementation of quantum walks on non-degree-regular graphs , 2012 .
[36] Klaus Jansen,et al. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.
[37] R. Cleve,et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.
[38] J. B. Wang,et al. Efficient quantum circuit implementation of quantum walks , 2007, 0706.0304.
[39] Mario Szegedy,et al. Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule , 2004, quant-ph/0401053.