Efficient quantum circuits for Szegedy quantum walks

A major advantage in using Szegedy's formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk on directed and weighted graphs. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm.

[1]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[2]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[3]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[4]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[5]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[6]  S. D. Berry,et al.  Two-particle quantum walks: Entanglement and graph isomorphism testing , 2011 .

[7]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[8]  Maris Ozols,et al.  Quantum Walks Can Find a Marked Element on Any Graph , 2010, Algorithmica.

[9]  Andrew M. Childs,et al.  Limitations on the simulation of non-sparse Hamiltonians , 2009, Quantum Inf. Comput..

[10]  E. Sampathkumar On tensor product graphs , 1975 .

[11]  Guoming Wang Quantum algorithms for approximating the effective resistances of electrical networks , 2013, ArXiv.

[12]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[13]  John Watrous,et al.  Continuous-Time Quantum Walks on the Symmetric Group , 2003, RANDOM-APPROX.

[14]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[15]  Ashley Montanaro,et al.  Efficient quantum walk on a quantum processor , 2015, Nature Communications.

[16]  Kurt Bryan,et al.  The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..

[17]  Pawel Wocjan,et al.  Efficient circuits for quantum walks , 2009, Quantum Inf. Comput..

[18]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[19]  Michael Small,et al.  Comparing classical and quantum PageRanks , 2015, Quantum Inf. Process..

[20]  Hans-J. Briegel,et al.  Quantum mixing of Markov chains for special distributions , 2015, ArXiv.

[21]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  J. B. Wang,et al.  A classical approach to the graph isomorphism problem using quantum walks , 2007, 0705.2531.

[23]  Frédéric Magniez,et al.  On the Hitting Times of Quantum Versus Random Walks , 2008, Algorithmica.

[24]  Frédéric Magniez,et al.  Quantum Complexity of Testing Group Commutativity , 2005, Algorithmica.

[25]  Miguel-Angel Martin-Delgado,et al.  Google in a Quantum Network , 2011, Scientific Reports.

[26]  P. Wocjan,et al.  Efficient quantum circuits for arbitrary sparse unitaries , 2009, 0904.2211.

[27]  Michele Mosca,et al.  Quantum Networks for Generating Arbitrary Quantum States , 2001, OFC 2001.

[28]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[29]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[30]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[31]  Miguel-Angel Martin-Delgado,et al.  Quantum Google in a Complex Network , 2013, Scientific Reports.

[32]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[33]  Christof Zalka,et al.  Efficient Simulation of Quantum Systems by Quantum Computers , 1998 .

[34]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[35]  T. Loke,et al.  Efficient circuit implementation of quantum walks on non-degree-regular graphs , 2012 .

[36]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.

[37]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[38]  J. B. Wang,et al.  Efficient quantum circuit implementation of quantum walks , 2007, 0706.0304.

[39]  Mario Szegedy,et al.  Spectra of Quantized Walks and a $\sqrt{\delta\epsilon}$ rule , 2004, quant-ph/0401053.