Similarity search over enriched geospatial data

Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.

[1]  Tie-Yan Liu,et al.  A Theoretical Analysis of NDCG Type Ranking Measures , 2013, COLT.

[2]  Dieter Pfoser,et al.  Spatio-textual user matching and clustering based on set similarity joins , 2018, The VLDB Journal.

[3]  Jure Leskovec,et al.  Mining of Massive Datasets, 2nd Ed , 2014 .

[4]  Yunjun Gao,et al.  Pivot-based Metric Indexing , 2017, Proc. VLDB Endow..

[5]  Torsten Suel,et al.  Text vs. space: efficient geo-search query processing , 2011, CIKM '11.

[6]  Christos Faloutsos,et al.  The Omni-family of all-purpose access methods: a simple and effective way to make similarity search more efficient , 2007, The VLDB Journal.

[7]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[8]  Themis Palpanas,et al.  Local Similarity Search on Geolocated Time Series Using Hybrid Indexing , 2019, SIGSPATIAL/GIS.

[9]  Yunjun Gao,et al.  Special Section on the International Conference on Data Engineering 2015 , 2017, IEEE Trans. Knowl. Data Eng..

[10]  Xing Xie,et al.  Hybrid index structures for location-based web search , 2005, CIKM '05.

[11]  Naphtali Rishe,et al.  Keyword Search on Spatial Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[12]  Dimitrios Skoutas,et al.  Indexing Geolocated Time Series Data , 2017, SIGSPATIAL/GIS.

[13]  Torsten Suel,et al.  Efficient query processing in geographic web search engines , 2006, SIGMOD Conference.

[14]  Dieter Pfoser,et al.  Similarity Search on Spatio-Textual Point Sets , 2016, EDBT.

[15]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[16]  Mark Sanderson,et al.  Spatio-textual Indexing for Geographical Search on the Web , 2005, SSTD.

[17]  Jens Lehmann,et al.  Big POI data integration with Linked Data technologies , 2019, EDBT.

[18]  Ihab F. Ilyas,et al.  A survey of top-k query processing techniques in relational database systems , 2008, CSUR.

[19]  Xuemin Lin,et al.  Top-k Set Similarity Joins , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[20]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[21]  Christian S. Jensen,et al.  A framework for efficient spatial web object retrieval , 2012, The VLDB Journal.