RNA polymerase II dynamics shape enhancer–promoter interactions

[1]  R. Tjian,et al.  Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1 , 2022, Nature Genetics.

[2]  Mariano Barbieri,et al.  Enhancer–promoter contact formation requires RNAPII and antagonizes loop extrusion , 2022, bioRxiv.

[3]  A. Siepel,et al.  RNA Pol II pausing facilitates phased pluripotency transitions by buffering transcription , 2022, bioRxiv.

[4]  A. Joyner,et al.  Rapid and efficient degradation of endogenous proteins in vivo identifies stage-specific roles of RNA Pol II pausing in mammalian development. , 2022, Developmental cell.

[5]  Lauren A. Choate,et al.  Prediction of histone post-translational modification patterns based on nascent transcription data , 2022, Nature Genetics.

[6]  Takashi Fukaya,et al.  Molecular architecture of enhancer-promoter interaction. , 2022, Current opinion in cell biology.

[7]  A. Koziolek,et al.  Deep-learning microscopy image reconstruction with quality control reveals second-scale rearrangements in RNA polymerase II clusters , 2021, bioRxiv.

[8]  G. Nienhaus,et al.  RNA polymerase II clusters form in line with surface condensation on regulatory chromatin , 2021, Molecular systems biology.

[9]  Michael J. Bolt,et al.  Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. , 2021, Molecular cell.

[10]  R. Schwessinger,et al.  Defining genome architecture at base-pair resolution , 2021, Nature.

[11]  M. Vingron,et al.  Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq , 2021, bioRxiv.

[12]  B. van Steensel,et al.  Nonlinear control of transcription through enhancer–promoter interactions , 2021, Nature.

[13]  M. Lorincz,et al.  Transcription shapes genome-wide histone acetylation patterns , 2021, Nature Communications.

[14]  N. Hannett,et al.  RNA-Mediated Feedback Control of Transcriptional Condensates , 2020, Cell.

[15]  M. Levine,et al.  Enhancer-promoter communication: hubs or loops? , 2020, Current opinion in genetics & development.

[16]  D. C. Di Giammartino,et al.  Transcription factors: building hubs in the 3D space , 2020, Cell cycle.

[17]  Fidel Ramírez,et al.  pyGenomeTracks: reproducible plots for multivariate genomic datasets , 2020, Bioinform..

[18]  Jennifer E. Phillips-Cremins,et al.  Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression , 2020, Nature Neuroscience.

[19]  K. Adelman,et al.  Evaluating Enhancer Function and Transcription. , 2020, Annual review of biochemistry.

[20]  Ashley R. Woodfin,et al.  NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. , 2020, Molecular cell.

[21]  Jie Huang,et al.  Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III , 2020, Genome Biology.

[22]  Meenakshi S Kagda,et al.  New developments on the Encyclopedia of DNA Elements (ENCODE) data portal , 2019, Nucleic Acids Res..

[23]  Robert S. Illingworth,et al.  Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation , 2019, Molecular cell.

[24]  J. Rinn,et al.  Differential contribution of steady‐state RNA and active transcription in chromatin organization , 2019, EMBO reports.

[25]  P. Fraser,et al.  Long-range enhancer–promoter contacts in gene expression control , 2019, Nature Reviews Genetics.

[26]  Erez Lieberman Aiden,et al.  A Pliable Mediator Acts as a Functional Rather Than an Architectural Bridge between Promoters and Enhancers , 2019, Cell.

[27]  N. Hannett,et al.  Pol II phosphorylation regulates a switch between transcriptional and splicing condensates , 2019, Nature.

[28]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[29]  S. Mundlos,et al.  Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. , 2019, Molecular cell.

[30]  Tinyi Chu,et al.  Discovering Transcriptional Regulatory Elements From Run‐On and Sequencing Data Using the Web‐Based dREG Gateway , 2018, Current protocols in bioinformatics.

[31]  Anders S. Hansen,et al.  Resolving the 3D landscape of transcription-linked mammalian chromatin folding , 2019, bioRxiv.

[32]  Leonid A. Mirny,et al.  Ultrastructural details of mammalian chromosome architecture , 2019, bioRxiv.

[33]  Antonina Hafner,et al.  Visualizing DNA folding and RNA in embryos at single-cell resolution , 2019, Nature.

[34]  Sreejith J. Nair,et al.  Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly , 2019, Nature Structural & Molecular Biology.

[35]  J. Lis,et al.  Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock , 2019, Proceedings of the National Academy of Sciences.

[36]  Jacob M. Schreiber,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[37]  N. Hannett,et al.  Enhancer features that drive formation of transcriptional condensates , 2018, bioRxiv.

[38]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[39]  Lauren A. Choate,et al.  Identification of regulatory elements from nascent transcription using dREG , 2018, bioRxiv.

[40]  Leighton J. Core,et al.  Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme , 2018, Nature Genetics.

[41]  J. Lis,et al.  Single-molecule nascent RNA sequencing reveals regulatory domain architecture at promoters and enhancers , 2018, Nature Genetics.

[42]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[43]  R. Tjian,et al.  Imaging dynamic and selective low-complexity domain interactions that control gene transcription , 2018, Science.

[44]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[45]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[46]  Thomas Gregor,et al.  Dynamic interplay between enhancer-promoter topology and gene activity , 2018, Nature Genetics.

[47]  James E. Bradner,et al.  The dTAG system for immediate and target-specific protein degradation , 2018, Nature Chemical Biology.

[48]  T. Meyer,et al.  Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements , 2018, Science.

[49]  J. Soutourina Transcription regulation by the Mediator complex , 2017, Nature Reviews Molecular Cell Biology.

[50]  Hanlee P. Ji,et al.  Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562 , 2017, bioRxiv.

[51]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[52]  Jay W. Shin,et al.  FANTOM5 CAGE profiles of human and mouse samples , 2017, Scientific Data.

[53]  Daniel S. Kim,et al.  Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation , 2017, Nature Genetics.

[54]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[55]  B. Garcia,et al.  Mll3 and Mll4 Facilitate Enhancer RNA Synthesis and Transcription from Promoters Independently of H3K4 Monomethylation. , 2017, Molecular cell.

[56]  Julia Zeitlinger,et al.  Paused RNA polymerase II inhibits new transcriptional initiation , 2017, Nature Genetics.

[57]  Kin Chung Lam,et al.  High-resolution TADs reveal DNA sequences underlying genome organization in flies , 2017, bioRxiv.

[58]  S. Q. Xie,et al.  Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM) , 2017, Nature.

[59]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[60]  R. Roeder,et al.  Mediator: A Drawbridge across the Enhancer-Promoter Divide. , 2016, Molecular cell.

[61]  Maxim Imakaev,et al.  FISH-ing for captured contacts: towards reconciling FISH and 3C , 2016, Nature Methods.

[62]  Geoffrey Fudenberg,et al.  Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome , 2016, Nature Methods.

[63]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[64]  Leighton J. Core,et al.  Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq) , 2016, Nature Protocols.

[65]  Michael Levine,et al.  Enhancer Control of Transcriptional Bursting , 2016, Cell.

[66]  N. Hannett,et al.  Transcription factor trapping by RNA in gene regulatory elements , 2015, Science.

[67]  A. Sandelin,et al.  A Unified Architecture of Transcriptional Regulatory Elements , 2015, bioRxiv.

[68]  David C Fargo,et al.  Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. , 2015, Molecular cell.

[69]  D. Fargo,et al.  Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. , 2015, Molecular cell.

[70]  Stephanie L. Hyland,et al.  Identification of active transcriptional regulatory elements with GRO-seq , 2015, Nature Methods.

[71]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[72]  André L. Martins,et al.  Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers , 2014, Nature Genetics.

[73]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[74]  D. Fargo,et al.  Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. , 2013, Molecular cell.

[75]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[76]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[77]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[78]  Parinya Noisa,et al.  A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli. , 2011, Journal of biotechnology.

[79]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[80]  Sohail Malik,et al.  The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation , 2010, Nature Reviews Genetics.

[81]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[82]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[83]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[84]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[85]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[86]  J. D. Engel,et al.  Developmental regulation of β-globin gene switching , 1988, Cell.

[87]  Pierre Chambon,et al.  In vivo sequence requirements of the SV40 early promoter region , 1981, Nature.

[88]  P. Gruss,et al.  Simian virus 40 tandem repeated sequences as an element of the early promoter. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Chromatin: Methods and Protocols , 2022 .

[90]  OUP accepted manuscript , 2021, Bioinformatics.

[91]  Jennifer A. Mitchell,et al.  Transcription factories are nuclear subcompartments that remain in the absence of transcription. , 2008, Genes & development.

[92]  Wouter de Laat,et al.  The β-globin nuclear compartment in development and erythroid differentiation , 2003, Nature Genetics.