Thermal Emission in the Southwest Clump of VY CMa

We present high spatial resolution LBTI/NOMIC $9-12$ $\mu m$ images of VY CMa and its massive outflow feature, the Southwest (SW) Clump. Combined with high-resolution imaging from HST ($0.4-1$ $\mu m$) and LBT/LMIRCam ($1-5$ $\mu m$), we isolate the spectral energy distribution (SED) of the clump from the star itself. Using radiative-transfer code DUSTY, we model both the scattered light from VY CMa and the thermal emission from the dust in the clump to estimate the optical depth, mass, and temperature of the SW Clump. The SW Clump is optically thick at 8.9 $\mu m$ with a brightness temperature of $\sim$200 K. With a dust chemistry of equal parts silicates and metallic iron, as well as assumptions on grain size distribution, we estimate a dust mass of $5.4\times10^{-5}\,M_\odot$. For a gas--to--dust ratio of 100, this implies a total mass of $5.4\times10^{-3}\,M_\odot$. Compared to the typical mass-loss rate of VY CMa, the SW Clump represents an extreme, localized mass-loss event from $\lesssim300$ years ago.

[1]  L. Decin,et al.  ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris , 2016, 1605.03077.

[2]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[3]  K. Menten,et al.  AN INTERFEROMETRIC SPECTRAL LINE AND IMAGING SURVEY OF VY CANIS MAJORIS IN THE 345 GHz BAND , 2013, 1309.7360.

[4]  Benchmark problems for dust radiative transfer , 1997 .

[5]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[6]  R. Humphreys,et al.  High-Resolution, Long-Slit Spectroscopy of VY Canis Majoris: The Evidence for Localized High Mass Loss Events , 2004, astro-ph/0410399.

[7]  Robert D. Gehrz,et al.  The Asymmetric Nebula Surrounding the Extreme Red Supergiant Vy Canis Majoris , 2001 .

[8]  L. Close,et al.  SIRIUS B IMAGED IN THE MID-INFRARED: NO EVIDENCE FOR A REMNANT PLANETARY SYSTEM , 2011, 1101.4314.

[9]  M. Groenewegen Infrared excess around nearby red giant branch stars and Reimers law , 2012 .

[10]  B. Davies,et al.  The evolution of red supergiants to supernova in NGC 2100 , 2016, 1608.03895.

[11]  R. Humphreys,et al.  SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS HISTORIES OF THE HYPERGIANTS μ Cep, VY CMa, IRC+10420, AND ρ Cas , 2015, 1512.01529.

[12]  T. J. Jones,et al.  Commissioning results of MMT-POL: the 1-5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT , 2012, Other Conferences.

[13]  L. Testi,et al.  ALMA sub-mm maser and dust distribution of VY Canis Majoris , 2014, 1409.5497.

[14]  Terry J. Jones,et al.  The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta* , 2007 .

[15]  M. Groenewegen Infrared excess around nearby RGB stars and Reimers law , 2012, 1203.4137.

[16]  V. Vaitheeswaran,et al.  The Large Binocular Telescope mid-infrared camera (LMIRcam): final design and status , 2010, Astronomical Telescopes + Instrumentation.

[17]  R. Humphreys,et al.  Searching for Cool Dust. II. Infrared Imaging of The OH/IR Supergiants, NML Cyg, VX Sgr, S Per, and the Normal Red Supergiants RS Per and T Per , 2017, 1708.00018.

[18]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[19]  A. Kemball,et al.  Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris , 2017, 1703.02084.

[20]  O. Krause,et al.  MESS (Mass-loss of Evolved StarS), a Herschel key program , 2010, 1012.2701.

[21]  K. Menten,et al.  DISTANCE AND KINEMATICS OF THE RED HYPERGIANT VY CMa: VERY LONG BASELINE ARRAY AND VERY LARGE ARRAY ASTROMETRY , 2011 .

[22]  C. Townes,et al.  Characteristics of dust shells around 13 late-type stars. , 1994 .

[23]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[24]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[25]  P. H. Hauschildt,et al.  Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry , 2012, 1203.5194.

[26]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[27]  E. Lopez-Rodriguez,et al.  PROBING HYPERGIANT MASS LOSS WITH ADAPTIVE OPTICS IMAGING AND POLARIMETRY IN THE INFRARED: MMT-Pol AND LMIRCam OBSERVATIONS OF IRC +10420 AND VY CANIS MAJORIS , 2015, 1505.04328.

[28]  J. Black,et al.  ALMA observations of TiO2 around VY Canis Majoris , 2015, 1506.00818.

[29]  B. Mennesson,et al.  Overview of LBTI: a multipurpose facility for high spatial resolution observations , 2016, Astronomical Telescopes + Instrumentation.

[30]  L. Decin,et al.  ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris , 2014, 1410.1622.

[31]  Bertrand Mennesson,et al.  Operation and performance of the mid-infrared camera, NOMIC, on the Large Binocular Telescope , 2014, Astronomical Telescopes and Instrumentation.

[32]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[33]  M. Skrutskie,et al.  ADAPTIVE OPTICS IMAGING OF VY CANIS MAJORIS AT 2–5 μm WITH LBT/LMIRCam , 2013, 1305.6912.

[34]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[35]  M. Harwit,et al.  The Infrared Continuum Spectrum of VY Canis Majoris , 2001, astro-ph/0109148.