High-performance compound-semiconductor integrated circuits for advanced digital coherent optical communications systems

Communications traffic over photonic networks is exponentially increasing due to the spread of broadband applications. To cope with the rapid growth, novel 100-Gb/s digital coherent systems have been deployed recently in optical core networks. Further research and development of digital coherent technologies with channel rates of beyond 100Gb/s is now being conducted. Optical transceivers for such high-speed communications systems need high-performance analog and mixed-signal electronic circuits such as optical modulator drivers, transimpedance amplifiers (TIAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). Compound-semiconductor integrated circuits (ICs) have played key roles in this technical field. This paper reviews recent trends in compound-semiconductor ICs for such advanced digital coherent optical communications systems and presents our latest results based on InP heterojunction bipolar transistor (HBT) technology.

[1]  Tetsuya Suemitsu,et al.  InP and GaN high electron mobility transistors for millimeter-wave applications , 2015, IEICE Electron. Express.

[2]  Yutaka Miyamoto Over 400 Gbit/s digital coherent channels for optical transport network , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[3]  H. Nosaka,et al.  An over-67-GHz-bandwidth 2 Vppd linear differential amplifier with gain control in 0.25-µm InP DHBT technology , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[4]  Munehiko Nagatani,et al.  160-Gbps Nyquist PAM4 transmitter using a digital-preprocessed analog-multiplexed DAC , 2015, 2015 European Conference on Optical Communication (ECOC).

[5]  Shogo Yamanaka,et al.  Compact Low-Power Optical/Electrical Devices Enabling Pluggable Coherent Transceivers for Datacom , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[6]  P. Chevalier,et al.  A 108GS/s track and hold amplifier with MOS-HBT switch , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[7]  Munehiko Nagatani,et al.  36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems , 2015, 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS).

[8]  C. Steinbeiser,et al.  100 Gb/s Optical DP-QPSK Using Two Surface Mount Dual Channel Modulator Drivers , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[9]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[10]  H. Yamazaki,et al.  A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[11]  Kazuro Kikuchi,et al.  Fundamentals of Coherent Optical Fiber Communications , 2016, Journal of Lightwave Technology.

[12]  Agnieszka Konczykowska,et al.  70 GSa/s and 51 GHz bandwidth track-and-hold amplifier in InP DHBT process , 2013 .

[13]  Kazuro Kikuchi,et al.  Digital coherent optical communication systems: fundamentals and future prospects , 2011, IEICE Electron. Express.

[14]  Munehiko Nagatani,et al.  75 GBd InP-HBT MUX-DAC module for high-symbol-rate optical transmission , 2015 .

[15]  Munehiko Nagatani,et al.  5 × 1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  Marinette Besson,et al.  A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory , 2011, 2011 IEEE International Solid-State Circuits Conference.

[17]  E. Yamada,et al.  High-Speed InP-Based Mach-Zehnder Modulator for Advanced Modulation Formats , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[19]  T. Goh,et al.  Integrated 100-Gb/s PDM-QPSK modulator using a hybrid assembly technique with silica-based PLCs and LiNbO3 phase modulators , 2008, 2008 34th European Conference on Optical Communication.

[20]  Minoru Fujishima,et al.  Recent progress and prospects of terahertz CMOS , 2015, IEICE Electron. Express.

[21]  H. Nosaka,et al.  A 60-GS/s 6-Bit DAC in 0.5-µm InP HBT Technology for Optical Communications Systems , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[22]  Tao Ding,et al.  Coherent transceiver operating at 61-Gbaud/s. , 2015, Optics express.

[23]  Filipe Jorge,et al.  59-dBOmega 68-GHz Variable Gain-Bandwidth Differential Linear TIA in 0.7-µm InP DHBT for 400-Gb/s Optical Communication Systems , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[24]  W. Deal,et al.  Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz , 2007, 2007 IEEE International Electron Devices Meeting.

[25]  S. Chandrasekhar,et al.  Generation of a digitally shaped 55-GBd 64-QAM single-carrier signal using novel high-speed DACs , 2014, OFC 2014.

[26]  Daniel S. Green,et al.  The DARPA Diverse Accessible Heterogeneous Integration (DAHI) Program: Status and Future Directions , 2014 .

[27]  W. Hafez,et al.  Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C , 2006, 2006 International Electron Devices Meeting.

[28]  Yusuf Leblebici,et al.  22.1 A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32nm digital SOI CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[29]  Kenji Kurishima,et al.  Performance of InP/InGaAs HBTs with a Thin Highly N-Type Doped Layer in the Emitter-Base Heterojunction Vicinity , 2012, IEICE Trans. Electron..

[30]  Hideaki Matsuzaki,et al.  Over 450-GHz ft and fmax InP/InGaAs DHBTs With a Passivation Ledge Fabricated by Utilizing SiN/SiO2 Sidewall Spacers , 2014, IEEE Transactions on Electron Devices.

[31]  Hideyuki Nosaka,et al.  Wide dynamic range transimpedance amplifier IC for 100-G DP-QPSK optical links using 1-µm InP HBTs , 2012, IEICE Electron. Express.

[32]  Hajime Shoji,et al.  A Compact Low-Power 224-Gb/s DP-16QAM Modulator Module with InP-Based Modulator and Linear Driver ICs , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[33]  Dietmar Kissinger,et al.  23.5 A dual 64Gbaud 10kΩ 5% THD linear differential transimpedance amplifier with automatic gain control in 0.13µm BiCMOS technology for optical fiber coherent receivers , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[34]  Hao Huang,et al.  An 8-bit 100-GS/s distributed DAC in 28-nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[35]  Shogo Yamanaka,et al.  Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP. , 2011, Optics express.