Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry

In this paper, we present a new formulation for recovering the fiber tract geometry within a voxel from diffusion weighted magnetic resonance imaging (MRI) data, in the presence of single or multiple neuronal fibers. To this end, we define a discrete set of diffusion basis functions. The intravoxel information is recovered at voxels containing fiber crossings or bifurcations via the use of a linear combination of the above mentioned basis functions. Then, the parametric representation of the intravoxel fiber geometry is a discrete mixture of Gaussians. Our synthetic experiments depict several advantages by using this discrete schema: the approach uses a small number of diffusion weighted images (23) and relatively small b values (1250 s/mm2 ), i.e., the intravoxel information can be inferred at a fraction of the acquisition time required for datasets involving a large number of diffusion gradient orientations. Moreover our method is robust in the presence of more than two fibers within a voxel, improving the state-of-the-art of such parametric models. We present two algorithmic solutions to our formulation: by solving a linear program or by minimizing a quadratic cost function (both with non-negativity constraints). Such minimizations are efficiently achieved with standard iterative deterministic algorithms. Finally, we present results of applying the algorithms to synthetic as well as real data.

[1]  Mariano Rivera,et al.  Basis Tensor Decomposition for Restoring Intra-Voxel Structure and Stochastic Walks for Inferring Brain Connectivity in DT-MRI , 2006, International Journal of Computer Vision.

[2]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[3]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[4]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[5]  S. Rossitti Introduction to Functional Magnetic Resonance Imaging, Principles and Techniques , 2002 .

[6]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[7]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[8]  Daniel C. Alexander,et al.  An Introduction to Computational Diffusion MRI: the Diffusion Tensor and Beyond , 2006, Visualization and Processing of Tensor Fields.

[9]  S Skare,et al.  Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. , 2000, Journal of magnetic resonance.

[10]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[11]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[12]  B. Vemuri,et al.  Basis functions for estimating intra-voxel structure in DW-MRI , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[13]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[14]  E. Stejskal Use of Spin Echoes in a Pulsed Magnetic‐Field Gradient to Study Anisotropic, Restricted Diffusion and Flow , 1965 .

[15]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[16]  Xavier Rodet,et al.  Sound Signals Decomposition Using a High Resolution Matching Pursuit , 1996, ICMC.

[17]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[18]  Stanley J. Watson,et al.  The rat brain in stereotaxic coordinates (2nd edn) by George Paxinos and Charles Watson, Academic Press, 1986. £40.00/$80.00 (264 pages) ISBN 012 547 6213 , 1987, Trends in Neurosciences.

[19]  V. Wedeen,et al.  Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI , 2000 .

[20]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[21]  Mariano Rivera,et al.  Basis pursuit based algorithm for intra-voxel recovering information in DW-MRI , 2005, Sixth Mexican International Conference on Computer Science (ENC'05).

[22]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[23]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[24]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[25]  Ofer Pasternak,et al.  Variational Regularization of Multiple Diffusion Tensor Fields , 2006, Visualization and Processing of Tensor Fields.

[26]  D. LeBihan,et al.  Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[28]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[29]  B. Vemuri,et al.  Generalized scalar measures for diffusion MRI using trace, variance, and entropy , 2005, Magnetic resonance in medicine.

[30]  A. W. Anderson,et al.  Sub-voxel measurement of fiber orientation using high angular resolution diffusion tensor imaging , 2002 .

[31]  P.J. Basser,et al.  Diffusion-tensor MRI: theory, experimental design, and data analysis , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[32]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  J. Miller Numerical Analysis , 1966, Nature.

[34]  Jos B. T. M. Roerdink,et al.  BOLD Noise Assumptions in fMRI , 2006, Int. J. Biomed. Imaging.

[35]  V. Wedeen,et al.  Measuring Cortico-Cortical Connectivity Matrices with Diffusion Spectrum Imaging , 2001 .

[36]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[37]  B W Kreher,et al.  Multitensor approach for analysis and tracking of complex fiber configurations , 2005, Magnetic resonance in medicine.

[38]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[39]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[40]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[41]  D. Tuch High Angular Resolution Diffusion Imaging of the Human Brain , 1999 .

[42]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[43]  Bengt Jönsson,et al.  Restricted Diffusion in Cylindrical Geometry , 1995 .

[44]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[45]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[46]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[47]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[48]  Russell A. Poldrack,et al.  A structural basis for developmental dyslexia: Evidence from diffusion tensor imaging , 2001 .

[49]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[50]  Yijun Liu,et al.  Recovery of intra-voxel structure from HARD DWI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[51]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[52]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[53]  Van J. Wedeen,et al.  A path inte-gral approach to white matter tractography , 2000 .

[54]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.