Entropy Analysis of Integer and Fractional Dynamical Systems

This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.

[1]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[3]  M. Ubriaco,et al.  Entropies based on fractional calculus , 2009, 0902.2726.

[4]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[5]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[6]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  Sergio Da Silva,et al.  Shannon, Lévy, and Tsallis: A Note , 2008 .

[9]  I. Podlubny Fractional differential equations , 1998 .

[10]  Dumitru Baleanu,et al.  About fractional quantization and fractional variational principles , 2009 .

[11]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[12]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[13]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[14]  Karl Heinz Hoffmann,et al.  Fractional Diffusion, Irreversibility and Entropy , 2003 .

[15]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[16]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[17]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  A. R. Plastino,et al.  Tsallis entropy and Jaynes' Information Theory formalism , 1999 .

[20]  Thomas J. Carter,et al.  An introduction to information theory and entropy , 2007 .

[21]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[22]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[23]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[24]  A. M. Mathai,et al.  Boltzmann-Gibbs Entropy Versus Tsallis Entropy: Recent Contributions to Resolving the Argument of Einstein Concerning “Neither Herr Boltzmann nor Herr Planck has Given a Definition of W”? , 2004 .

[25]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[26]  Christian Beck,et al.  Generalised information and entropy measures in physics , 2009, 0902.1235.

[27]  G. Zaslavsky,et al.  Fractional dynamics of systems with long-range interaction , 2006, 1107.5436.

[28]  Raoul R. Nigmatullin,et al.  The statistics of the fractional moments: Is there any chance to "read quantitatively" any randomness? , 2006, Signal Process..

[29]  Thomas J. Anastasio,et al.  The fractional-order dynamics of brainstem vestibulo-oculomotor neurons , 1994, Biological Cybernetics.

[30]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[31]  W. Ames Mathematics in Science and Engineering , 1999 .

[32]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[33]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[34]  J. A. Tenreiro Machado,et al.  Fractional Dynamics : A Statistical Perspective , 2008 .