On the odd-minor variant of Hadwiger's conjecture
暂无分享,去创建一个
Bruce A. Reed | Paul D. Seymour | Bert Gerards | Adrian Vetta | James F. Geelen | B. Reed | P. Seymour | J. Geelen | A. Vetta | B. Gerards
[1] L. Pósa,et al. On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.
[2] Paul D. Seymour,et al. Packing Non-Zero A-Paths In Group-Labelled Graphs , 2006, Comb..
[3] Bruce A. Reed,et al. Mangoes and Blueberries , 1999, Comb..
[4] B. Mohar,et al. Graph Minors , 2009 .
[5] Alexandr V. Kostochka,et al. Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..
[6] Carsten Thomassen,et al. Graph decomposition with applications to subdivisions and path systems modulo k , 1983, J. Graph Theory.
[7] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[8] A. Thomason. An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] R Bruce,et al. MANGOES AND BLUEBERRIES , 1999 .
[10] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[11] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[12] W. Mader. Homomorphiesätze für Graphen , 1968 .
[13] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .