Disease associated perturbations of H/ACA small RNA activity reveal a functional role for specialized RNA modifications in hematopoietic stem cell differentiation

Noncoding RNAs control critical cellular processes, although their contribution to disease remains largely unexplored. Dyskerin associates with hundreds of H/ACA small RNAs to generate a multitude of functionally distinct ribonucleoproteins (RNPs). The DKC1 gene, encoding dyskerin, is mutated in the multisystem disorder X-linked Dyskeratosis Congenita (X-DC). A central question is whether DKC1 mutations affect the stability of H/ACA RNPs including those modifying ribosomal RNA (rRNA). We carried out comprehensive profiling of dyskerin-associated H/ACA RNPs, revealing remarkable heterogeneity in the expression and function of subsets of H/ACA small RNAs in X-DC patient cells. Using a novel mass spectrometry approach, we uncovered single-nucleotide perturbations in dyskerin-guided rRNA modifications, providing functional readouts of small RNA dysfunction in X-DC. Strikingly, we identified that the catalytic activity of dyskerin is required for accurate hematopoietic stem cell differentiation. Altogether, these findings reveal that small noncoding RNA dysfunctions may contribute to the pleiotropic manifestation of human disease. important markers

[1]  P. Campbell,et al.  Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. , 2013, Blood.

[2]  A. Gyenesei,et al.  Expression of small nucleolar RNAs in leukemic cells , 2012, Cellular Oncology.

[3]  P. Gaulard,et al.  Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. , 2012, Blood.

[4]  P. Tassone,et al.  The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma , 2012, Blood Cancer Journal.

[5]  K. Ginalski,et al.  C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification. , 2012, Genes & development.

[6]  Holger Heyn,et al.  CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer , 2012, RNA biology.

[7]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[8]  P. Brousset,et al.  Specific small nucleolar RNA expression profiles in acute leukemia , 2012, Leukemia.

[9]  F. Farzaneh,et al.  Are snoRNAs and snoRNA host genes new players in cancer? , 2012, Nature Reviews Cancer.

[10]  Wei Wu,et al.  Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers , 2012, The Journal of pathology.

[11]  Davide Ruggero,et al.  rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. , 2011, Molecular cell.

[12]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[13]  L. Montanaro Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer , 2010, The Journal of pathology.

[14]  T. Vulliamy,et al.  Mutations in C16orf57 and normal-length telomeres unify a subset of patients with dyskeratosis congenita, poikiloderma with neutropenia and Rothmund–Thomson syndrome , 2010, Human molecular genetics.

[15]  Guang Peng,et al.  Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. , 2010, Cancer research.

[16]  P. Rosenberg,et al.  Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study , 2010, British journal of haematology.

[17]  C. Bellodi,et al.  Deregulation of oncogene‐induced senescence and p53 translational control in X‐linked dyskeratosis congenita , 2010, The EMBO journal.

[18]  L. Montanaro,et al.  Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. , 2010, Cancer research.

[19]  Misaki Akiyama,et al.  Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data , 2009, Nucleic acids research.

[20]  I. Dokal,et al.  Dyskeratosis congenita: a genetic disorder of many faces , 2007, Clinical genetics.

[21]  Maurille J. Fournier,et al.  The 3D rRNA modification maps database: with interactive tools for ribosome analysis , 2007, Nucleic Acids Res..

[22]  S. Chanock,et al.  Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. , 2007, Blood.

[23]  T. Vulliamy,et al.  Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. , 2007, Human molecular genetics.

[24]  R. Terns,et al.  Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs , 2007, Nature Reviews Molecular Cell Biology.

[25]  Gabriele Varani,et al.  The structure and function of small nucleolar ribonucleoproteins , 2007, Nucleic acids research.

[26]  J. Dinman,et al.  Optimization of Ribosome Structure and Function by rRNA Base Modification , 2007, PloS one.

[27]  P. Lansdorp,et al.  Flow cytometry and FISH to measure the average length of telomeres (flow FISH) , 2006, Nature Protocols.

[28]  J. Clohessy,et al.  Dyskerin expression influences the level of ribosomal RNA pseudo‐uridylation and telomerase RNA component in human breast cancer , 2006, The Journal of pathology.

[29]  U. Meier,et al.  How a single protein complex accommodates many different H/ACA RNAs. , 2006, Trends in biochemical sciences.

[30]  Wei Xu,et al.  Impaired Control of IRES-Mediated Translation in X-Linked Dyskeratosis Congenita , 2006, Science.

[31]  D. Baker,et al.  Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. , 2006, Molecular cell.

[32]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[33]  Gabriele Varani,et al.  The Cbf5–Nop10 complex is a molecular bracket that organizes box H/ACA RNPs , 2005, Nature Structural &Molecular Biology.

[34]  J. McCloskey,et al.  Detection of the common RNA nucleoside pseudouridine in mixtures of oligonucleotides by mass spectrometry. , 2005, Analytical chemistry.

[35]  U. Meier,et al.  The many facets of H/ACA ribonucleoproteins , 2005, Chromosoma.

[36]  A. Poustka,et al.  Basal transcription activity of the dyskeratosis congenita gene is mediated by Sp1 and Sp3 and a patient mutation in a Sp1 binding site is associated with decreased promoter activity. , 2002, Gene.

[37]  K. Devriendt,et al.  Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis , 2001, Human Genetics.

[38]  I. Dokal,et al.  Dyskeratosis congenita in all its forms , 2000, British journal of haematology.

[39]  M. W. Gray,et al.  Pseudouridine in RNA: What, Where, How, and Why , 2000, IUBMB life.

[40]  K. Collins,et al.  A telomerase component is defective in the human disease dyskeratosis congenita , 1999, Nature.

[41]  A. Poustka,et al.  Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal‐Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1 , 1999, British journal of haematology.

[42]  Maurille J. Fournier,et al.  Point Mutations in Yeast CBF5 Can Abolish In Vivo Pseudouridylation of rRNA , 1999, Molecular and Cellular Biology.

[43]  M. Mann,et al.  Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. , 1998, RNA.

[44]  S. Klauck,et al.  X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions , 1998, Nature Genetics.

[45]  D. Tollervey,et al.  The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. , 1998, Genes & development.

[46]  J. Bachellerie,et al.  Guiding ribose methylation of rRNA. , 1997, Trends in biochemical sciences.

[47]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[48]  W S Hancock,et al.  Analysis of Oligonucleotides by HPLC-Electrospray Ionization Mass Spectrometry. , 1997, Analytical chemistry.