Repository of Enriched Structures of Proteins Involved in the Red Blood Cell Environment (RESPIRE)

The Red Blood Cell (RBC) is a metabolically-driven cell vital for processes such a gas transport and homeostasis. RBC possesses at its surface exposing antigens proteins that are critical in blood transfusion. Due to their importance, numerous studies address the cell function as a whole but more and more details of RBC structure and protein content are now studied using massive state-of-the art characterisation techniques. Yet, the resulting information is frequently scattered in many scientific articles, in many databases and specialized web servers. To provide a more compendious view of erythrocytes and of their protein content, we developed a dedicated database called RESPIRE that aims at gathering a comprehensive and coherent ensemble of information and data about proteins in RBC. This cell-driven database lists proteins found in erythrocytes. For a given protein entry, initial data are processed from external portals and enriched by using state-of-the-art bioinformatics methods. As structural information is extremely useful to understand protein function and predict the impact of mutations, a strong effort has been put on the prediction of protein structures with a special treatment for membrane proteins. Browsing the database is available through text search for reference gene names or protein identifiers, through pre-defined queries or via hyperlinks. The RESPIRE database provides valuable information and unique annotations that should be useful to a wide audience of biologists, clinicians and structural biologists. Database URL: http://www.dsimb.inserm.fr/respire

[1]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[2]  Andrew C. R. Martin Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV) , 2014, F1000Research.

[3]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[4]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[5]  Philipp F. Lange,et al.  Annotating N Termini for the Human Proteome Project: N Termini and Nα-Acetylation Status Differentiate Stable Cleaved Protein Species from Degradation Remnants in the Human Erythrocyte Proteome , 2014, Journal of proteome research.

[6]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[7]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[8]  O. Renaud,et al.  Aggregation of mononuclear and red blood cells through an α4β1-Lu/basal cell adhesion molecule interaction in sickle cell disease , 2010, Haematologica.

[9]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[10]  M. le Gall,et al.  Disruption of SMIM1 causes the Vel− blood type , 2013, EMBO molecular medicine.

[11]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[12]  K. McGrath,et al.  Delineating stages of erythropoiesis using imaging flow cytometry. , 2017, Methods.

[13]  Ivet Bahar,et al.  ProDy: Protein Dynamics Inferred from Theory and Experiments , 2011, Bioinform..

[14]  Martina Moras,et al.  From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals , 2017, Front. Physiol..

[15]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[16]  A. G. Brevern,et al.  A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). , 2005, Biochimica et biophysica acta.

[17]  M. Mann,et al.  Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology. , 2010, Journal of proteomics.

[18]  Leonardo Pardo,et al.  Relation between sequence and structure in membrane proteins , 2013, Bioinform..

[19]  Robert C. Edgar MUSCLE: multiple sequence alignment with improved accuracy and speed , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  Tanya Z. Berardini,et al.  Cross-product extensions of the Gene Ontology , 2009, J. Biomed. Informatics.

[22]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[23]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[24]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[25]  F. Salachas,et al.  Identification and characterization of a novel XK splice site mutation in a patient with McLeod syndrome , 2009, Transfusion.

[26]  A. G. Brevern,et al.  Sequence–structure relationship study in all-α transmembrane proteins using an unsupervised learning approach , 2015, Amino Acids.

[27]  N. Mohandas,et al.  Human and murine erythropoiesis , 2015, Current opinion in hematology.

[28]  Massimiliano Pontil,et al.  PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments , 2012, Bioinform..

[29]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[30]  Tamás Hegedüs,et al.  Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications , 2015, Database J. Biol. Databases Curation.

[31]  Webb Miller,et al.  Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies , 2004, Nucleic Acids Res..

[32]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[33]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[34]  A. D’Alessandro,et al.  Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? , 2017, Expert review of proteomics.

[35]  G. Daniels Blood grouping by molecular genetics , 2011 .

[36]  Ludovic Autin,et al.  In silico studies on DARC. , 2009, Infectious disorders drug targets.

[37]  Jennifer M. Rust,et al.  The BioGRID Interaction Database , 2011 .

[38]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[39]  Arne Elofsson,et al.  The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides , 2015, Nucleic Acids Res..

[40]  Hong-Bin Shen,et al.  Template‐based protein structure prediction in CASP11 and retrospect of I‐TASSER in the last decade , 2016, Proteins.

[41]  J. Palis Primitive and definitive erythropoiesis in mammals , 2013, Front. Physiol..

[42]  Yee Siew Choong,et al.  General overview on structure prediction of twilight-zone proteins , 2015, Theoretical Biology and Medical Modelling.

[43]  Jean-Christophe Gelly,et al.  An empirical energy function for structural assessment of protein transmembrane domains. , 2015, Biochimie.

[44]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[45]  L. Rénia,et al.  Quantitative mass spectrometry of human reticulocytes reveal proteome‐wide modifications during maturation , 2018, British journal of haematology.

[46]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[47]  C. Etchebest,et al.  Structural Model of the Anion Exchanger 1 (SLC4A1) and Identification of Transmembrane Segments Forming the Transport Site , 2013, The Journal of Biological Chemistry.

[48]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[49]  J. Wiśniewski,et al.  Quantitative Analysis of Human Red Blood Cell Proteome. , 2017, Journal of proteome research.

[50]  W. Flegel,et al.  The Rhesus Site , 2014, Transfusion Medicine and Hemotherapy.

[51]  O. Daescu,et al.  The proteomics and interactomics of human erythrocytes , 2013, Experimental biology and medicine.

[52]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[53]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[54]  Frédérique Verdier,et al.  Comprehensive Proteomic Analysis of Human Erythropoiesis , 2016, Cell reports.

[55]  Magnus Jöud,et al.  Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. , 2016, Blood advances.

[56]  Albert J R Heck,et al.  Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. , 2010, Journal of proteomics.

[57]  K. Heesom,et al.  Protein Distribution during Human Erythroblast Enucleation In Vitro , 2013, PloS one.

[58]  Burkhard Rost,et al.  FreeContact: fast and free software for protein contact prediction from residue co-evolution , 2014, BMC Bioinformatics.

[59]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[60]  D. Baker,et al.  Multipass membrane protein structure prediction using Rosetta , 2005, Proteins.

[61]  Sebastian Kelm,et al.  MEDELLER: homology-based coordinate generation for membrane proteins , 2010, Bioinform..

[62]  A. D’Alessandro,et al.  Native protein complexes in the cytoplasm of red blood cells. , 2013, Journal of proteome research.

[63]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[64]  J. Sussman,et al.  JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia , 2013 .

[65]  Simone Daminelli,et al.  Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis. , 2010, Journal of chromatography. A.

[66]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2015 , 2014, Nucleic Acids Res..

[67]  Odile Burlet-Schiltz,et al.  Extensive Analysis of the Cytoplasmic Proteome of Human Erythrocytes Using the Peptide Ligand Library Technology and Advanced Mass Spectrometry*S , 2008, Molecular & Cellular Proteomics.

[68]  M. Mann,et al.  Red blood cell (RBC) membrane proteomics--Part II: Comparative proteomics and RBC patho-physiology. , 2010, Journal of proteomics.

[69]  The UniProt Consortium,et al.  Update on activities at the Universal Protein Resource (UniProt) in 2013 , 2012, Nucleic Acids Res..

[70]  K. Heesom,et al.  Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation* , 2016, Molecular & Cellular Proteomics.

[71]  Robert Fredriksson,et al.  Mapping the human membrane proteome : a majority of the human membrane proteins can be classified according to function and evolutionary origin , 2015 .

[72]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[73]  Maria Jesus Martin,et al.  BioJS: an open source JavaScript framework for biological data visualization , 2013, Bioinform..

[74]  A. D’Alessandro,et al.  The red blood cell proteome and interactome: an update. , 2010, Journal of proteome research.

[75]  M. Mann,et al.  In-depth analysis of the membrane and cytosolic proteome of red blood cells. , 2006, Blood.