Performance Improvement of Tea Industry with Multi Objective Particle Swarm Optimisation

In this Paper the Multi-Objective Particle Swarm Optimisation has been used to demonstrate ways to improve the efficiency of Tea Industry after implementation in MAT-LAB. The data for Terai Tea Estate has been extracted from the Financial Statements obtained from Tea Board. The ratio functions have been identified, whose maximisation will improve the performance of the organisation. The regression analysis has been performed to estimate the coefficients of two ratio functions. The Pareto Front has been derived for this dual objective function using Multi-Objective Particle Swarm Optimisation. The results have been presented in this paper.

[1]  Ron J. Patton,et al.  Input Observability and Input Reconstruction , 1998, Autom..

[2]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[3]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[4]  Dirk Thierens,et al.  Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies , 2012, J. Heuristics.

[5]  Kin Keung Lai,et al.  Multiple objective fractional programming involving semilocally type I-preinvex and related functions , 2005 .

[6]  Swagatam Das,et al.  Parameter selection of a Particle Swarm Optimisation dynamics by closed loop stability analysis , 2010, Int. J. Comput. Sci. Math..

[7]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Manfred Lenzen,et al.  AGGREGATION VERSUS DISAGGREGATION IN INPUT–OUTPUT ANALYSIS OF THE ENVIRONMENT , 2011 .

[9]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[10]  I. Kim,et al.  Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation , 2006 .

[11]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[12]  Esmeralda A. Ramalho,et al.  Fractional regression models for second stage DEA efficiency analyses , 2010 .

[13]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[14]  Kevin Tucker,et al.  Response surface approximation of pareto optimal front in multi-objective optimization , 2004 .

[15]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[16]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Y. Censor Pareto optimality in multiobjective problems , 1977 .

[18]  Mohamed E. El-Hawary,et al.  A Survey of Particle Swarm Optimization Applications in Electric Power Systems , 2009, IEEE Transactions on Evolutionary Computation.

[19]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[20]  A note on global Pareto optimality in multicriteria optimization problems , 2008 .

[21]  S. Afriat Efficiency Estimation of Production Function , 1972 .

[22]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[23]  Roger Guesnerie,et al.  Pareto Optimality in Non-Convex Economies , 1975 .

[24]  Jong-hyun Ryu,et al.  Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[25]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[26]  T. J. Cook,et al.  Evaluating the administrative efficiency of courts , 1982 .

[27]  R. Tiwari,et al.  Multiple objective linear fractional programming: a fuzzy set theoretic approach , 1992 .

[28]  Scott E. Atkinson,et al.  Estimation of Output and Input Technical Efficiency Using a Flexible Form and Panel Data , 1994 .

[29]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..