Mean-cyclic-error lower bounds via integral transform of likelihood-ratio function

In this paper, we consider non-Bayesian periodic parameter estimation and present a new class of mean-cyclic-error (MCE) lower bounds based on integral transform of the likelihood-ratio (LR) function. The MCE bounds in this class are valid for any cyclic-unbiased estimator, in the Lehmann sense, with uniform cyclic performance. Based on the general class of MCE bounds, we propose a novel MCE bound, which utilizes the periodic nature of the problem via the kernel of Fourier series. The proposed bound is based on discrete samples of the LR function in both the frequency and parameter domains and is shown to be tractable and useful for periodic parameter estimation. The proposed bound is compared to the MCE of the maximum-likelihood estimator and to existing MCE bounds in the problem of frequency estimation.

[1]  H. Cramér A contribution to the theory of statistical estimation , 1946 .

[2]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[3]  Ruggero Reggiannini,et al.  A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..

[4]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[5]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[6]  Joseph Tabrikian,et al.  A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.

[7]  Marius Pesavento,et al.  Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise , 2001, IEEE Trans. Signal Process..

[8]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[9]  Yonina C. Eldar MSE Bounds With Affine Bias Dominating the CramÉr–Rao Bound , 2008, IEEE Transactions on Signal Processing.

[10]  Mohammed Nabil El Korso,et al.  Deterministic Performance Bounds on the Mean Square Error for Near Field Source Localization , 2013, IEEE Transactions on Signal Processing.

[11]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[12]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.

[13]  E. Lehmann A General Concept of Unbiasedness , 1951 .

[14]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[15]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[16]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[17]  Joseph Tabrikian,et al.  On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..

[18]  Joseph Tabrikian,et al.  Cyclic Cramér-Rao-type bounds for periodic parameter estimation , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[19]  Joseph Tabrikian,et al.  Performance bounds for constrained parameter estimation , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[20]  Peter Gerstoft,et al.  Sparse DOA estimation with polynomial rooting , 2015, 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[21]  Joseph Tabrikian,et al.  Cyclic Bayesian Cramér-Rao bound for filtering in circular state space , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[22]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[23]  J. S. Abel A bound on mean square estimate error , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[24]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[25]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[26]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[27]  P. Willett,et al.  CRLB for likelihood functions with parameter-dependent support and a new bound , 2014, 2014 IEEE Aerospace Conference.

[28]  Joseph Tabrikian,et al.  Bayesian cyclic bounds for periodic parameter estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[29]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[30]  Steven Kay,et al.  Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[32]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[33]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[34]  Lang Tong,et al.  Estimation After Parameter Selection: Performance Analysis and Estimation Methods , 2015, IEEE Transactions on Signal Processing.

[35]  Eric Chaumette,et al.  Lower bounds on the mean square error derived from mixture of linear and non-linear transformations of the unbiasness definition , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[37]  Benjamin Friedlander,et al.  DOA estimation in multipath: an approach using fourth-order cumulants , 1997, IEEE Trans. Signal Process..