Profiling histone modification patterns in plants using genomic tiling microarrays

In eukaryotes, the processes of transcription, replication and homologous recombination occur in the context of chromatin. Although tightly packed, this structure is highly dynamic, being modified through the action of many enzymatic activities that reorganize nucleosomes; covalently modify histones through acetylation, phosphorylation, methylation and so on; exchange histones with variants; and in many eukaryotes, including plants and mammals, methylate DNA residues(1). Transcriptional activity is usually associated with hyperacetylation of histones tails as well as with di- or trimethylation of Lys4 in histone H3. Conversely, silent chromatin typically correlates with histone hypoacetylation and di- or trimethylation of histone H3 Lys9 (refs. 2,3). Because of its small genome, Arabidopsis thaliana serves as a powerful system for understanding the role of various histone modifications in a complex organism, notably in association with DNA methylation and in relation to the epigenetic inheritance of silent chromatin(4). Here we describe a chromatin immunoprecipitation (ChIP) protocol developed for A. thaliana that permits, in combination with hybridization to genomic tiling microarrays, the mapping of histone modifications with high resolution along large genomic regions(5). After cross-linking, chromatin is immunoprecipitated using antibodies directed against specific histone modifications. DNA recovered from the precipitate is amplified, Labeled, hybridized to microarrays and compared to total DNA. This protocol has been used successfully to map histone H3 methylated at Lys4 or Lys9 across a 1.5-Mb region(5) and should have broad applications in plants and other organisms. A protocol that outlines the profiling of DNA methylation patterns at similar high resolution has also been developed(6).

[1]  R. Martienssen,et al.  Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1 , 2002, Science.

[2]  R. Martienssen,et al.  Vernalization requires epigenetic silencing of FLC by histone methylation , 2004, Nature.

[3]  V. Orlando,et al.  Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. , 2000, Trends in biochemical sciences.

[4]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[5]  Vincent Colot,et al.  Profiling DNA methylation patterns using genomic tiling microarrays , 2005, Nature Methods.

[6]  C. Gutiérrez,et al.  Role of an Atypical E2F Transcription Factor in the Control of Arabidopsis Cell Growth and Differentiation , 2004, The Plant Cell Online.

[7]  R. van Driel,et al.  The eukaryotic genome: a system regulated at different hierarchical levels , 2003, Journal of Cell Science.

[8]  T. Jenuwein,et al.  An epigenetic road map for histone lysine methylation , 2003, Journal of Cell Science.

[9]  S. Henikoff,et al.  Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. , 2003, Genetics.

[10]  I. Somssich,et al.  Stimulus-Dependent, Promoter-Specific Binding of Transcription Factor WRKY1 to Its Native Promoter and the Defense-Related Gene PcPR1-1 in Parsleyw⃞ , 2004, The Plant Cell Online.

[11]  G. Martin,et al.  The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis Elements Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.017574. , 2003, The Plant Cell Online.

[12]  R. Martienssen,et al.  DNA methylation and epigenetic inheritance in plants and filamentous fungi. , 2001, Science.

[13]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[14]  Michael Black,et al.  Role of transposable elements in heterochromatin and epigenetic control , 2004, Nature.