Brownian Motion in Minkowski Space
暂无分享,去创建一个
[1] Afshin Montakhab,et al. Molecular dynamics simulation of a relativistic gas: Thermostatistical properties , 2011, Comput. Phys. Commun..
[2] S. Goldstein. ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .
[3] A. Vulpiani,et al. Fluctuation-dissipation: Response theory in statistical physics , 2008, 0803.0719.
[4] The origin of diffusion: The case of non-chaotic systems , 2002, nlin/0210049.
[5] Carlo Cercignani,et al. The Relativistic Boltzmann Equation: Theory and Applications , 2012 .
[6] Giovanni Gallavotti,et al. Statistical Mechanics: A Short Treatise , 1999 .
[7] P. O’Hara. Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity , 2013 .
[8] Joseph B Keller,et al. Diffusion at finite speed and random walks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] Frederick E. Petry,et al. Principles and Applications , 1997 .
[10] W. Steubing,et al. Zur Theorie der Brownschen Bewegung , 1908 .
[11] B. Duplantier. Brownian Motion, "Diverse and Undulating" , 2007, 0705.1951.
[12] D. Perepelitsa. Relativistic Dynamics , 2018, Competitive Physics.
[13] Peter Hanggi,et al. Relativistic Brownian Motion , 2008, 0812.1996.
[14] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[15] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[16] L. Horwitz,et al. Relativistic Brownian Motion and Gravity as an Eikonal Approximation to a Quantum Evolution Equation , 2005 .
[17] R. Hakim. Introduction to Relativistic Statistical Mechanics: Classical and Quantum , 2011 .
[18] R. Dudley. Lorentz-invariant Markov processes in relativistic phase space , 1966 .
[19] G. Morriss,et al. The nonequilibrium Lorentz gas. , 1995, Chaos.
[20] Jie Sun,et al. Causation entropy from symbolic representations of dynamical systems. , 2015, Chaos.
[21] A. Einstein. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .
[22] M Barrett,et al. HEAT WAVES , 2019, The Year of the Femme.
[23] L. Rondoni,et al. Brownian Motion and General Relativity , 2013, 1304.0405.
[24] R. Tumulka. A Relativistic Version of the Ghirardi–Rimini–Weber Model , 2004, quant-ph/0406094.
[25] S. S. Mizrahi,et al. Squeezed states, generalized Hermite polynomials and pseudo-diffusion equation , 1992 .
[26] R. Hakim. RELATIVISTIC STOCHASTIC PROCESSES. , 1968 .
[27] W. V. Leeuwen,et al. Relativistic Kinetic Theory: Principles and Applications , 1980 .
[28] P. Talkner,et al. Relativistic diffusion processes and random walk models , 2006, cond-mat/0608023.
[29] Periodic orbit expansions for the Lorentz gas , 1994 .
[30] L. Rondoni,et al. Thermodynamics and complexity of simple transport phenomena , 2006 .
[31] H. Larralde,et al. A relativistically covariant random walk , 2007 .
[32] R. Wagoner,et al. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .
[33] J. Lacki,et al. La signification du temps propre en mécanique ondulatoire [53] , 2009 .
[34] Oliver C. Ibe,et al. Markov processes for stochastic modeling , 2008 .
[35] Relativistic Brownian Motion , 2002, physics/0212036.
[36] Angelo Vulpiani,et al. Chaos and Coarse Graining in Statistical Mechanics , 2008 .
[37] K. Chung. Lectures from Markov processes to Brownian motion , 1982 .