Brownian Motion in Minkowski Space

We construct a model of Brownian motion in Minkowski space. There are two aspects of the problem. The first is to define a sequence of stopping times associated with the Brownian “kicks” or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, the Central Limit Theorem (CLT) leads to temperature dependent four dimensional distributions defined on Minkowski space, for distances and 4-velocities. In particular, our processes are characterized by two independent time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to the geodesic motion in-between impulses. The subsequent distributions are solutions of a (covariant) pseudo-diffusion equation which involves derivatives with respect to both time variables, rather than solutions of the telegraph equation which has a single time variable. This approach simplifies some of the known problems in this context.

[1]  Afshin Montakhab,et al.  Molecular dynamics simulation of a relativistic gas: Thermostatistical properties , 2011, Comput. Phys. Commun..

[2]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[3]  A. Vulpiani,et al.  Fluctuation-dissipation: Response theory in statistical physics , 2008, 0803.0719.

[4]  The origin of diffusion: The case of non-chaotic systems , 2002, nlin/0210049.

[5]  Carlo Cercignani,et al.  The Relativistic Boltzmann Equation: Theory and Applications , 2012 .

[6]  Giovanni Gallavotti,et al.  Statistical Mechanics: A Short Treatise , 1999 .

[7]  P. O’Hara Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity , 2013 .

[8]  Joseph B Keller,et al.  Diffusion at finite speed and random walks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[10]  W. Steubing,et al.  Zur Theorie der Brownschen Bewegung , 1908 .

[11]  B. Duplantier Brownian Motion, "Diverse and Undulating" , 2007, 0705.1951.

[12]  D. Perepelitsa Relativistic Dynamics , 2018, Competitive Physics.

[13]  Peter Hanggi,et al.  Relativistic Brownian Motion , 2008, 0812.1996.

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[15]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[16]  L. Horwitz,et al.  Relativistic Brownian Motion and Gravity as an Eikonal Approximation to a Quantum Evolution Equation , 2005 .

[17]  R. Hakim Introduction to Relativistic Statistical Mechanics: Classical and Quantum , 2011 .

[18]  R. Dudley Lorentz-invariant Markov processes in relativistic phase space , 1966 .

[19]  G. Morriss,et al.  The nonequilibrium Lorentz gas. , 1995, Chaos.

[20]  Jie Sun,et al.  Causation entropy from symbolic representations of dynamical systems. , 2015, Chaos.

[21]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[22]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[23]  L. Rondoni,et al.  Brownian Motion and General Relativity , 2013, 1304.0405.

[24]  R. Tumulka A Relativistic Version of the Ghirardi–Rimini–Weber Model , 2004, quant-ph/0406094.

[25]  S. S. Mizrahi,et al.  Squeezed states, generalized Hermite polynomials and pseudo-diffusion equation , 1992 .

[26]  R. Hakim RELATIVISTIC STOCHASTIC PROCESSES. , 1968 .

[27]  W. V. Leeuwen,et al.  Relativistic Kinetic Theory: Principles and Applications , 1980 .

[28]  P. Talkner,et al.  Relativistic diffusion processes and random walk models , 2006, cond-mat/0608023.

[29]  Periodic orbit expansions for the Lorentz gas , 1994 .

[30]  L. Rondoni,et al.  Thermodynamics and complexity of simple transport phenomena , 2006 .

[31]  H. Larralde,et al.  A relativistically covariant random walk , 2007 .

[32]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[33]  J. Lacki,et al.  La signification du temps propre en mécanique ondulatoire [53] , 2009 .

[34]  Oliver C. Ibe,et al.  Markov processes for stochastic modeling , 2008 .

[35]  Relativistic Brownian Motion , 2002, physics/0212036.

[36]  Angelo Vulpiani,et al.  Chaos and Coarse Graining in Statistical Mechanics , 2008 .

[37]  K. Chung Lectures from Markov processes to Brownian motion , 1982 .