Asymptotically tight bounds on time-space trade-offs in a pebble game

Asymptotically Ught tune-space trade-offs for pebblmg three d~fferent classes of directed aeychc graphs are derived Let N be the size of the graph, S the number of avadable pebbles, and T the time necessary for pebbling the graph A time-space trade-off of the form ST = O(N 2) ls proved for pebbhng (usmg only black pebbles) a specml class of permutaaon graphs that tmplement the bR-reversal permutation. If we are allowed to use black and whtte pebbles~ the time-space trade-off is shown to be of the form (:) r = o T¢ +0(~ . A tune-space trade-off of the form /N\OIN/S~ T= S O I ~ ) ~s proved for pebbling a class of graphs constructed by stacking superconcentrators m series. This tunespace trade-off holds whether we use only black or black and white pebbles A tune-space trade-off of the form T -$2 2°~N/s) Is proved for the class of all directed acychc graphs This trade-off also holds whether we use only black or black and white pebbles

[1]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[2]  Martin Tompa Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties of Their Circuits , 1980, J. Comput. Syst. Sci..

[3]  Michael C. Loui A Note on the Pebble Game , 1980, Inf. Process. Lett..

[4]  Stephen A. Cook,et al.  An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..

[5]  John E. Savage,et al.  Space-time trade-offs on the FFT algorithm , 1978, IEEE Trans. Inf. Theory.

[6]  Jan van Leeuwen,et al.  Move Rules and Trade-Offs in the Pebble Game , 1979, Theoretical Computer Science.

[7]  P. Erdoes,et al.  On sparse graphs with dense long paths. , 1975 .

[8]  Rüdiger Reischuk Improved bounds on the problem of time-space trade-off in the pebble game , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[9]  John E. Savage,et al.  Space-Time Tradeoffs for Oblivious Interger Multiplications , 1979, ICALP.

[10]  John E. Savage,et al.  Space-time tradeoffs for linear recursion , 1979, POPL '79.

[11]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[12]  Nicholas Pippenger Comparative schematology and pebbling with auxiliary pushdowns (Preliminary Version) , 1980, STOC '80.

[13]  Ashok K. Chandra Efficient Compilation of Linear Recursive Programs , 1973, SWAT.

[14]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[15]  Friedhelm Meyer auf der Heide A Comparison Between Two Variations of a Pebble Game on Graphs , 1979, ICALP.

[16]  Leslie G. Valiant,et al.  On Time Versus Space , 1977, JACM.

[17]  Joseph JáJá,et al.  Time-space tradeoffs for some algebraic problems , 1980, STOC '80.

[18]  Martin Tompa,et al.  Time-space tradeoffs for computing functions, using connectivity properties of their circuits , 1978, J. Comput. Syst. Sci..

[19]  Robert E. Tarjan,et al.  Variations of a pebble game on graphs , 1978 .

[20]  Ravi Sethi Complete Register Allocation Problems , 1975, SIAM J. Comput..

[21]  Leslie G. Valiant,et al.  On time versus space and related problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[22]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[23]  Andrzej Lingas A PSPACE Complete Problem Related to a Pebble Game , 1978, ICALP.

[24]  Martin Tompa,et al.  Two familiar transitive closure algorithms which admit no polynomial time, sublinear space implementations , 1980, STOC '80.

[25]  Robert E. Tarjan,et al.  The Pebbling Problem is Complete in Polynomial Space , 1980, SIAM J. Comput..

[26]  Robert E. Tarjan,et al.  Upper and lower bounds on time-space tradeoffs , 1979, STOC '79.

[27]  Ravi Sethi,et al.  Complete register allocation problems , 1973, SIAM J. Comput..

[28]  Nicholas Pippenger A Time-Space Trade-Off , 1978, JACM.