Reactive saccade adaptation boosts orienting of visuospatial attention

[1]  D. Pélisson,et al.  Inducing oculomotor plasticity to disclose the functional link between voluntary saccades and endogenous attention deployed perifoveally , 2019, Scientific Reports.

[2]  C. Curtis,et al.  Cortico-cerebellar network involved in saccade adaptation. , 2018, Journal of neurophysiology.

[3]  D. Pélisson,et al.  Saccadic Adaptation Boosts Ongoing Gamma Activity in a Subsequent Visuoattentional Task. , 2018, Cerebral cortex.

[4]  M. Lappe,et al.  The reward of seeing: Different types of visual reward and their ability to modify oculomotor learning. , 2017, Journal of vision.

[5]  Alessandro Farnè,et al.  Adaptation to Leftward Shifting Prisms Alters Motor Interhemispheric Inhibition , 2016, Cerebral cortex.

[6]  D. Pélisson,et al.  Increasing Attentional Load Boosts Saccadic Adaptation. , 2015, Investigative ophthalmology & visual science.

[7]  D. Pélisson,et al.  Deployment of spatial attention without moving the eyes is boosted by oculomotor adaptation , 2015, Front. Hum. Neurosci..

[8]  Sebastiaan Mathôt,et al.  PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments , 2014, Behavior research methods.

[9]  Hongkeun Kim Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta‐analysis , 2014, Human brain mapping.

[10]  J. Wallman,et al.  Salient Distractors Can Induce Saccade Adaptation , 2014, Journal of ophthalmology.

[11]  O. Bertrand,et al.  Brain Dynamics of Distractibility: Interaction Between Top-Down and Bottom-Up Mechanisms of Auditory Attention , 2014, Brain Topography.

[12]  Denis Pélisson,et al.  A role for the parietal cortex in sensorimotor adaptation of saccades. , 2014, Cerebral cortex.

[13]  J. Lupiáñez,et al.  Reduction of the Spatial Stroop Effect by Peripheral Cueing as a Function of the Presence/Absence of Placeholders , 2013, PloS one.

[14]  Dirk Kerzel,et al.  Saccadic adaptation induced by a perceptual task. , 2013, Journal of vision.

[15]  Patrik Vuilleumier,et al.  Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients , 2013, Cortex.

[16]  Juan Lupiáñez,et al.  Two cognitive and neural systems for endogenous and exogenous spatial attention , 2013, Behavioural Brain Research.

[17]  Denis Pélisson,et al.  Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades , 2012, NeuroImage.

[18]  M. Posner,et al.  The attention system of the human brain: 20 years after. , 2012, Annual review of neuroscience.

[19]  Mark W Greenlee,et al.  Differential cortical activation during saccadic adaptation. , 2012, Journal of neurophysiology.

[20]  Peter Thier,et al.  The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning , 2011, The European journal of neuroscience.

[21]  Laurent Madelain,et al.  Saccade adaptation is unhampered by distractors. , 2010, Journal of vision.

[22]  Qiyong Guo,et al.  An event-related functional MRI study on working memory impairment in children with primary nocturnal enuresis , 2010 .

[23]  D. Pélisson,et al.  Sensorimotor adaptation of saccadic eye movements , 2010, Neuroscience & Biobehavioral Reviews.

[24]  Robert Oostenveld,et al.  Visually induced gamma-band activity predicts speed of change detection in humans , 2010, NeuroImage.

[25]  D. Pélisson,et al.  Behavioral evidence of separate adaptation mechanisms controlling saccade amplitude lengthening and shortening. , 2009, Journal of neurophysiology.

[26]  Susanne Ferber,et al.  Direct effects of prismatic lenses on visuomotor control: an event‐related functional MRI study , 2008, The European journal of neuroscience.

[27]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[28]  A. Milner,et al.  Prism adaptation improves voluntary but not automatic orienting in neglect , 2008, Neuroreport.

[29]  Edgar Erdfelder,et al.  G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences , 2007, Behavior research methods.

[30]  J. Danckert,et al.  Prism adaptation reduces the disengage deficit in right brain damage patients , 2007, Neuroreport.

[31]  Y. Rossetti,et al.  Visuo-spatial neglect: A systematic review of current interventions and their effectiveness , 2006, Neuroscience & Biobehavioral Reviews.

[32]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[33]  D. Pélisson,et al.  Ipsidirectional impairment of prism adaptation after unilateral lesion of anterior cerebellum , 2005, Neurology.

[34]  Denis Pélisson,et al.  Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm. , 2005, Learning & memory.

[35]  Josh Wallman,et al.  Gain adaptation of exogenous shifts of visual attention , 2002, Vision Research.

[36]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[37]  A Straube,et al.  Relation between the metrics of the presaccadic attention shift and of the saccade before and after saccadic adaptation. , 2000, Journal of neurophysiology.

[38]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[39]  C. Pierrot-Deseilligny,et al.  Cortical control of saccades , 1998, Experimental Brain Research.

[40]  M. Perenin,et al.  Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect , 1998, Nature.

[41]  Steven P. Tipper,et al.  Object-based inhibition of return in static displays , 1998 .

[42]  Tracy L. Faber,et al.  Role of posterior parietal cortex in the recalibration of visually guided reaching , 1996, Nature.

[43]  W. T. Thach,et al.  Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. , 1996, Brain : a journal of neurology.

[44]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[45]  M. Hallett,et al.  Adaptation to lateral displacement of vision in patients with lesions of the central nervous system , 1983, Neurology.

[46]  John W. Tukey,et al.  Data Analysis and Regression: A Second Course in Statistics , 1977 .

[47]  S. C. Mclaughlin Parametric adjustment in saccadic eye movements , 1967 .

[48]  Cranial Osteopathy,et al.  MYTH OR REALITY , 2018 .

[49]  Jan Friso Groote,et al.  20 Years After , 2007 .

[50]  S. Kim,et al.  X-ray micro-imaging of flows in opaque conduits , 2007, J. Vis..

[51]  Carine Michel,et al.  Simulating unilateral neglect in normals: myth or reality? , 2006, Restorative neurology and neuroscience.

[52]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[53]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[54]  Michael I. Posner,et al.  Please Scroll down for Article the Quarterly Journal of Experimental Psychology Orienting of Attention Orienting of Attention* , 2022 .

[55]  J. Lupiáñez,et al.  Neuroscience and Biobehavioral Reviews the Spatial Orienting Paradigm: How to Design and Interpret Spatial Attention Experiments , 2022 .

[56]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .