A Rewrite System for Strongly Normalizable Terms
暂无分享,去创建一个
[1] G. Pottinger,et al. A type assignment for the strongly normalizable |?-terms , 1980 .
[2] Mariangiola Dezani-Ciancaglini,et al. An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..
[3] Mariangiola Dezani-Ciancaglini,et al. A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.
[4] Stephen L. Bloom,et al. Varieties of "if-then-else" , 1983, SIAM J. Comput..
[5] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[6] J. Roger Hindley,et al. Combinators and Lambda-Calculus , 1985, Combinators and Functional Programming Languages.
[7] Silvia Ghilezan,et al. Strong Normalization and Typability with Intersection Types , 1996, Notre Dame J. Formal Log..
[8] Gilles Dowek,et al. Proof normalization modulo , 1998, Journal of Symbolic Logic.
[9] Claude Kirchner,et al. HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.
[10] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[11] Gilles Dowek,et al. Truth Values Algebras and Proof Normalization , 2006, TYPES.
[12] Denis Cousineau,et al. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo , 2007, TLCA.
[13] Rick Statman,et al. A New Type Assignment for Strongly Normalizable Terms , 2013, CSL.
[14] Ali Assaf. Conservativity of Embeddings in the lambda Pi Calculus Modulo Rewriting , 2015, TLCA.