Comprehensive method based on model free method and IKP method for evaluating kinetic parameters of solid state reactions

This article presents, firstly, a short review of methods for evaluating kinetic parameters of solid state reactions and a critical analysis of the isoconversional principle of model free methods. It shows theoretically that the activation energy for complex reactions is not only a function of the reaction degree but also of heating programs, and points out that any method that attempts to extract the dependences of activation energy on conversion degree without considering the dependences of heating programs is problematic. Then an analysis is given of the invariant kinetic parameters (IKP) method and recommends an incremental version of it. Based on the incremental IKP method and model free method, a comprehensive method is proposed that predicts the degree of the dependences of activation energy on heating programs, selects reliable values of activation energy and extracts the values of variable pre‐exponential factor. This comprehensive method is tested using both simulation data and experimental data, the results of which show it can not only give reliable values of kinetic parameters but also be helpful in explaining inconsistencies of kinetic results in solid state reactions. © 2012 Wiley Periodicals, Inc.

[1]  C. D. Doyle Series Approximations to the Equation of Thermogravimetric Data , 1965, Nature.

[2]  Michael Mortimer,et al.  Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions , 2006 .

[3]  T. Tang,et al.  A new method for analysing non-isothermal thermoanalytical data from solid-state reactions , 1999 .

[4]  A. Ortega,et al.  A simple and precise linear integral method for isoconversional data , 2008 .

[5]  Naian Liu,et al.  New incremental isoconversional method for kinetic analysis of solid thermal decomposition , 2011 .

[6]  M. E. Brown,et al.  Arrhenius parameters and compensation behaviour in solid-state decompositions , 1997 .

[7]  C. D. Doyle Kinetic analysis of thermogravimetric data , 1961 .

[8]  S. Vyazovkin,et al.  Kinetics in solids. , 1997, Annual review of physical chemistry.

[9]  Two Types of Uncertainty in the Values of Activation Energy , 2001 .

[10]  Chen Haixiang,et al.  Critical study on the identification of reaction mechanism by the shape of TG/DTG curves , 2010 .

[11]  M. Maciejewski,et al.  Computational aspects of kinetic analysis. Part B: The ICTAC kinetics project : the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield , 2000 .

[12]  P. Garn The kinetic compensation effect , 1976 .

[13]  M. Reading,et al.  Modulated differential scanning calorimetry , 1993 .

[14]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[15]  L. Machado,et al.  Using ordinary differential equations system to solve isoconversional problems in non-isothermal kinetic analysis , 2007 .

[16]  Zhiming Gao,et al.  A consideration of errors and accuracy in the isoconversional methods , 2001 .

[17]  S. Vyazovkin,et al.  Kinetic analysis of reversible thermal decomposition of solids , 1995 .

[18]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[19]  L. Pérez-Maqueda,et al.  Critical study of the isoconversional methods of kinetic analysis , 2008 .

[20]  S. M. Marcus,et al.  Derivation of Temperature-Modulated DSC Thermal Conductivity Equations , 1998 .

[21]  H. X. Chen,et al.  New approximate formulae for the generalized temperature integral , 2009 .

[22]  S. Vyazovkin Evaluation of activation energy of thermally stimulated solid‐state reactions under arbitrary variation of temperature , 1997 .

[23]  R. T. Yang,et al.  Rational approximations of the integral of the Arrhenius function , 1977 .

[24]  S. Levchik,et al.  A method of finding invariant values of kinetic parameters , 1983 .

[25]  A. Galwey What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? , 2003 .

[26]  C. D. Doyle Estimating isothermal life from thermogravimetric data , 1962 .

[27]  T. Radko,et al.  Evaluation of the solutions of a standard kinetic equation for non-isothermal conditions , 1992 .

[28]  Calculation of activation energies using the sinusoidally modulated temperature , 2002 .

[29]  Haruhiko Tanaka,et al.  A kinetic compensation effect established for the thermal decomposition of a solid , 1991 .

[30]  Sergey Vyazovkin,et al.  Modification of the integral isoconversional method to account for variation in the activation energy , 2001, J. Comput. Chem..

[31]  M. E. Brown,et al.  “Model-free” kinetic analysis? , 2002 .

[32]  V. Logvinenko,et al.  Special features of the compensation effect in non-isothermal kinetics of solid-phase reactions , 1974 .

[33]  P. Budrugeac Differential Non-Linear Isoconversional Procedure for Evaluating the Activation Energy of Non-Isothermal Reactions , 2002 .

[34]  P. K. Gallagher,et al.  Kinetic analyses using simultaneous TG/DSC measurements: Part I: decomposition of calcium carbonate in argon , 2002 .

[35]  S. Vyazovkin Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project — the light at the end of the tunnel? , 2000 .

[36]  T. Ozawa Kinetic analysis by repeated temperature scanning. Part 1. Theory and methods , 2000 .

[37]  Siyu Chen,et al.  A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree , 2009, J. Comput. Chem..

[38]  Ammar Khawam,et al.  Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies , 2005 .

[39]  Nobuyoshi Koga,et al.  A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect , 1994 .

[40]  S. Vyazovkin Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?” , 2003 .

[41]  P. Budrugeac,et al.  On the nonlinear isoconversional procedures to evaluate the activation energy of nonisothermal reactions in solids , 2003 .

[42]  Chen Donghua,et al.  An integral method to determine variation in activation energy with extent of conversion , 2005 .

[43]  J. Farjas,et al.  Analysis of the sensitivity and sample–furnace thermal-lag of a differential thermal analyzer , 2005 .

[44]  R. Blaine,et al.  Obtaining Kinetic Parameters by Modulated Thermogravimetry , 1998 .

[45]  L. Vlaev,et al.  A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate , 2008 .

[46]  T. Ozawa Further thoughts on temperature oscillation in thermal analysis , 2003 .

[47]  Alan K. Burnham,et al.  Computational aspects of kinetic analysis.: Part D: The ICTAC kinetics project — multi-thermal–history model-fitting methods and their relation to isoconversional methods , 2000 .

[48]  S. Bourbigot,et al.  Three model-Free methods for calculation of activation energy in TG , 2004 .

[49]  S. Levchik,et al.  Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical survey). II. Reactions involving the participation of solid substances , 1985 .

[50]  T. Tang,et al.  Dynamic thermal analysis of solid-state reactions , 1997 .

[51]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[52]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[53]  M. Starink A new method for the derivation of activation energies from experiments performed at constant heating rate , 1996 .

[54]  Michael Jerry Antal,et al.  A Round-Robin Study of Cellulose Pyrolysis Kinetics by Thermogravimetry , 1999 .

[55]  Michael Jerry Antal,et al.  Thermal Lag, Fusion, and the Compensation Effect during Biomass Pyrolysis† , 1996 .

[56]  Sergey Vyazovkin,et al.  Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids , 1998 .

[57]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[58]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[59]  E. Kaisersberger,et al.  Model-free analysis of thermoanalytical data-advantages and limitations , 2002 .

[60]  S. Levchik,et al.  Isoparametric kinetic relations for chemical transformations in condensed substances (analytical survey). I , 1985 .

[61]  B. Roduit Computational aspects of kinetic analysis.: Part E: The ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes , 2000 .

[62]  M. E. Brown,et al.  Solid-state Decompositions — Stagnation or Progress? , 2000 .

[63]  Alan K. Burnham,et al.  Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results , 2000 .

[64]  S. Vyazovkin Model-free kinetics , 2006 .

[65]  Ammar Khawam,et al.  Role of isoconversional methods in varying activation energies of solid-state kinetics , 2005 .

[66]  A. Galwey Is the science of thermal analysis kinetics based on solid foundations?: A literature appraisal , 2004 .

[67]  Tong B. Tang,et al.  Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data , 1999 .

[68]  A. W. Coats,et al.  Kinetic parameters from thermogravimetric data. II. , 1965 .

[69]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[70]  P. Budrugeac The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters , 2007 .

[71]  B. Roduit Prediction of the progress of solid-state reactions under different temperature modes , 2002 .