Tri-State Nanoelectromechanical Memory Switches for the Implementation of a High-Impedance State

Tri-state nanoelectromechanical (NEM) memory switches are proposed for the implementation of high-impedance state 0 in addition to low-impedance states 1 and 2 for the improvement of conventional complementary metal-oxide-semiconductor-NEM (CMOS-NEM) reconfigurable logic (RL) operations. Although it is well known that the high impedance state of routing switches is essential to prevent the unnecessary data throughput of RL circuits, previously proposed NEM memory switches have only implemented binary states: states 1 and 2. On the contrary, our proposed NEM memory switches can have tri-states, which are achieved by modifying their operation methods and design guidelines.

[1]  Woo Young Choi,et al.  Scaling Trend of Nanoelectromechanical (NEM) Nonvolatile Memory Cells Based on Finite Element Analysis (FEA) , 2011, IEEE Transactions on Nanotechnology.

[3]  Qiang Luo,et al.  Crack-Based Complementary Nanoelectromechanical Switches for Reconfigurable Computing , 2020, IEEE Electron Device Letters.

[4]  T. Veijola,et al.  Equivalent-circuit model of the squeezed gas film in a silicon accelerometer , 1995 .

[5]  R. Howe,et al.  Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit , 2011, 2011 International Electron Devices Meeting.

[6]  K. Weiss Vibration Problems in Engineering , 1965, Nature.

[7]  W. Choi,et al.  Switching Voltage Analysis of Nanoelectromechanical Memory Switches for Monolithic 3-D CMOS-NEM Hybrid Reconfigurable Logic Circuits , 2018, IEEE Transactions on Electron Devices.

[8]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[9]  Woo Young Choi,et al.  Selection Line Optimization of Nanoelectromechanical (NEM) Memory Switches for Stress Relief , 2019 .

[10]  Russell Tessier,et al.  FPGA Architecture: Survey and Challenges , 2008, Found. Trends Electron. Des. Autom..

[11]  L. Hutin,et al.  NEMS switches for ultra-low-power digital logic: Challenges and opportunities , 2016, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).

[12]  W. Choi,et al.  Three-Dimensional Integration of Complementary Metal-Oxide-Semiconductor-Nanoelectromechanical Hybrid Reconfigurable Circuits , 2015, IEEE Electron Device Letters.

[13]  T. Liu,et al.  Adhesive Force Characterization for MEM Logic Relays With Sub-Micron Contacting Regions , 2014, Journal of Microelectromechanical Systems.

[14]  Tsu-Jae King Liu,et al.  Nanoelectromechanical Switches for Low-Power Digital Computing , 2015, Micromachines.

[15]  Woo Young Choi,et al.  Nonvolatile Nanoelectromechanical Memory Switches for Low-Power and High-Speed Field-Programmable Gate Arrays , 2015, IEEE Transactions on Electron Devices.

[16]  T. Liu,et al.  Back-End-of-Line Nano-Electro-Mechanical Switches for Reconfigurable Interconnects , 2020, IEEE Electron Device Letters.

[17]  W. Choi,et al.  Encapsulation of NEM Memory Switches for Monolithic-Three-Dimensional (M3D) CMOS–NEM Hybrid Circuits , 2018, Micromachines.

[18]  Gary X. Li,et al.  Review of viscous damping in micromachined structures , 2000, SPIE MOEMS-MEMS.

[19]  H.-S. Philip Wong,et al.  Efficient FPGAs using nanoelectromechanical relays , 2010, FPGA '10.

[20]  Tsu-Jae King Liu,et al.  Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[21]  Elad Alon,et al.  Mechanical Computing Redux: Relays for Integrated Circuit Applications , 2010, Proceedings of the IEEE.