KINEMATICS IN PARTIALLY IONIZED MOLECULAR CLOUDS: IMPLICATIONS FOR THE TRANSITION TO COHERENCE

A previous paper by Bailey & Basu shows analysis of density and mass-to-flux ratio maps for simulations with either an ionization profile which takes into account photoionization (step-like profile) or a cosmic ray only ionization profile. We extend this study to analyze the effect of these ionization profiles on velocity structures, kinematics, and synthetic spectra. Clump regions are found to occur at the convergence of two flows with a low velocity region and velocity direction transition occurring at the junction. Models with evident substructure show that core formation occurs on the periphery of these velocity valleys. Analysis of synthetic spectra reveals the presence of large non-thermal components within low-density gas, especially for models with the step-like ionization profile. All cores show small, sub-thermal relative motions compared to background gas. Large deviations within this analysis are due to the line of sight intersecting low- and high-density regions across the velocity switch transition. Positive deviations correspond to a foreground core moving away from the observer while negative deviations correspond to a background core moving toward the observer. Comparison of velocities resulting from different ionization profiles suggest that high ionization fractions yield supersonic velocities, up to two times the sound speed, while regions with low ionization fractions tend to be subsonic or mildly supersonic. This suggests that the transition to coherence within cores could be a transition between high and low ionization fractions within the gas.

[1]  P. Caselli,et al.  The dynamical properties of dense filaments in the infrared dark cloud G035.39−00.33⋆ , 2014, 1403.1444.

[2]  S. Basu,et al.  NON-IDEAL MAGNETOHYDRODYNAMIC SIMULATIONS OF THE TWO-STAGE FRAGMENTATION MODEL FOR CLUSTER FORMATION , 2013, 1310.8223.

[3]  J. Kauffmann,et al.  Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region , 2013, 1303.2118.

[4]  P. Caselli,et al.  Complex, quiescent kinematics in a highly filamentary infrared dark cloud , 2012, 1210.6835.

[5]  S. Basu,et al.  TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS , 2012, 1209.4664.

[6]  L. Hartmann,et al.  Rapid star formation and global gravitational collapse , 2011, 1111.2582.

[7]  Spain.,et al.  Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores , 2011, 1104.5445.

[8]  I. Bonnell,et al.  Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation , 2011, 1103.1532.

[9]  Di Li,et al.  THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD , 2010, 1007.5060.

[10]  Stanford,et al.  Dynamic star formation in the massive DR21 filament , 2010, 1003.4198.

[11]  J. Foster,et al.  DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES , 2010, 1002.2946.

[12]  J. Francesco,et al.  THE INITIAL CONDITIONS OF CLUSTERED STAR FORMATION. II. N2H+ OBSERVATIONS OF THE OPHIUCHUS B CORE , 2009, 0911.3922.

[13]  D. Johnstone,et al.  THE INTERPLAY OF TURBULENCE AND MAGNETIC FIELDS IN STAR-FORMING REGIONS: SIMULATIONS AND OBSERVATIONS , 2009, 0904.4511.

[14]  Wolf B. Dapp,et al.  Magnetically-Regulated Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion , 2008, 0810.0783.

[15]  S. Basu,et al.  Nonlinear evolution of gravitational fragmentation regulated by magnetic fields and ambipolar diffusion , 2008, 0806.2482.

[16]  M. Bate,et al.  On the relative motions of dense cores and envelopes in star-forming molecular clouds , 2006, astro-ph/0611421.

[17]  A. Walsh,et al.  A Large-Scale Survey of NGC 1333 , 2006, astro-ph/0610577.

[18]  S. Basu,et al.  Formation and Collapse of Nonaxisymmetric Protostellar Cores in Planar Magnetic Interstellar Clouds: Formulation of the Problem and Linear Analysis , 2006, astro-ph/0607622.

[19]  K. Tassis,et al.  Observational Constraints on the Ages of Molecular Clouds and the Star Formation Timescale: Ambipolar-Diffusion-controlled or Turbulence-induced Star Formation? , 2005, astro-ph/0512043.

[20]  C. W. Lee,et al.  Probing the Evolutionary Status of Starless Cores through N2H+ and N2D+ Observations , 2004, astro-ph/0409529.

[21]  A. Walsh,et al.  Star Formation on the Move? , 2004 .

[22]  S. Basu,et al.  Formation and Collapse of Nonaxisymmetric Protostellar Cores in Planar Magnetic Molecular Clouds , 2004, astro-ph/0404008.

[23]  P. Caselli,et al.  On the internal structure of starless cores - I. Physical conditions and the distribution of CO, CS, N$\mathsf{_2}$H$\mathsf{^+}$, and NH$\mathsf{_3}$ in L1498 and L1517B , 2004 .

[24]  P. Caselli Deuterated molecules as a probe of ionization fraction in dense interstellar clouds , 2002, astro-ph/0204127.

[25]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[26]  H Germany,et al.  Systematic Molecular Differentiation in Starless Cores , 2001, astro-ph/0112487.

[27]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[28]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[29]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[30]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[31]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[32]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[33]  P. Caselli,et al.  The Ionization Fraction in Dense Cloud Cores , 1998 .

[34]  Jonathan P. Williams,et al.  The Galactic Distribution of OB Associations in Molecular Clouds , 1997 .

[35]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[36]  G. Fuller,et al.  Thermal and nonthermal motions in dense cores , 1991 .

[37]  P. Myers,et al.  A survey for dense cores in dark clouds , 1989 .

[38]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[39]  W. Langer,et al.  Observations of DCO/plus/ - The electron abundance in dark clouds , 1977 .