Structural Insights into the Role of Domain Flexibility in Human DNA Ligase IV

[1]  C. Wyman,et al.  A human XRCC4–XLF complex bridges DNA , 2012, Nucleic acids research.

[2]  Qian Wu,et al.  Non-homologous end-joining partners in a helical dance: structural studies of XLF-XRCC4 interactions. , 2011, Biochemical Society transactions.

[3]  John A. Tainer,et al.  XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair , 2011, The Journal of Biological Chemistry.

[4]  R. Guérois,et al.  Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining , 2011, Proceedings of the National Academy of Sciences.

[5]  Catherine L. Worth,et al.  SDM—a server for predicting effects of mutations on protein stability and malfunction , 2011, Nucleic Acids Res..

[6]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[7]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[8]  X. Chen,et al.  Yeast Nej1 Is a Key Participant in the Initial End Binding and Final Ligation Steps of Nonhomologous End Joining* , 2010, The Journal of Biological Chemistry.

[9]  J. Tainer,et al.  XLF regulates filament architecture of the XRCC4·ligase IV complex. , 2010, Structure.

[10]  F. Guengerich,et al.  Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage , 2010, Journal of nucleic acids.

[11]  D. Ramsden,et al.  Dual Modes of Interaction between XRCC4 and Polynucleotide Kinase/Phosphatase , 2010, The Journal of Biological Chemistry.

[12]  B. L. Sibanda,et al.  Structural Biology of DNA Repair: Spatial Organisation of the Multicomponent Complexes of Nonhomologous End Joining , 2010, Journal of nucleic acids.

[13]  J. Tainer,et al.  Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states. , 2010, Biochemistry.

[14]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[15]  J. Tainer,et al.  Structural dynamics in DNA damage signaling and repair. , 2010, Current opinion in structural biology.

[16]  Catherine L. Worth,et al.  On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture , 2010, BMC Evolutionary Biology.

[17]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[19]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[20]  L. Pearl,et al.  Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. , 2009, DNA repair.

[21]  G. M. Wilson,et al.  Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair. , 2009, DNA repair.

[22]  S. Suh,et al.  ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[23]  P. Wu,et al.  Structural and Functional Interaction between the Human DNA Repair Proteins DNA Ligase IV and XRCC4 , 2009, Molecular and Cellular Biology.

[24]  P. Jeggo,et al.  XLF-Cernunnos promotes DNA ligase IV–XRCC4 re-adenylation following ligation , 2008, Nucleic acids research.

[25]  A. Tomkinson,et al.  Eukaryotic DNA ligases: structural and functional insights. , 2008, Annual review of biochemistry.

[26]  David J. Chen,et al.  Ku recruits XLF to DNA double‐strand breaks , 2008, EMBO reports.

[27]  G. Chu,et al.  Crystal structure of human XLF: a twist in nonhomologous DNA end-joining. , 2007, Molecular cell.

[28]  T. E. Wilson,et al.  Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. , 2007, DNA repair.

[29]  L. Aravind,et al.  The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins , 2007, Nucleic acids research.

[30]  C. Lima,et al.  Structural basis for nick recognition by a minimal pluripotent DNA ligase , 2007, Nature Structural &Molecular Biology.

[31]  Anastasia Nijnik,et al.  DNA repair is limiting for haematopoietic stem cells during ageing , 2007, Nature.

[32]  P. Jeggo,et al.  Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. , 2007, DNA repair.

[33]  M. Tsai,et al.  Human DNA ligase IV and the ligase IV/XRCC4 complex: analysis of nick ligation fidelity. , 2007, Biochemistry.

[34]  K. Ohshima,et al.  Epstein–Barr virus‐associated B‐cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome , 2007, American journal of medical genetics. Part A.

[35]  John A Tainer,et al.  A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. , 2006, Molecular cell.

[36]  Y. Ishino,et al.  The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. , 2006, Journal of molecular biology.

[37]  Nicholas Furnham,et al.  Structure of an Xrcc4-DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. , 2006, DNA repair.

[38]  S. Jackson,et al.  XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining , 2006, Cell.

[39]  A. Fischer,et al.  Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly , 2006, Cell.

[40]  Yunmei Ma,et al.  Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV , 2006, European journal of immunology.

[41]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[42]  Stewart Shuman,et al.  The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. , 2004, Current opinion in structural biology.

[43]  A. Tomkinson,et al.  Human DNA ligase I completely encircles and partially unwinds nicked DNA , 2004, Nature.

[44]  P. Jeggo,et al.  Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. , 2004, Human molecular genetics.

[45]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[46]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[47]  D. Svergun,et al.  Small-angle scattering studies of biological macromolecules in solution , 2003 .

[48]  B. L. Sibanda,et al.  Crystal structure of an Xrcc4–DNA ligase IV complex , 2001, Nature Structural Biology.

[49]  P. Jeggo,et al.  DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. , 2001, Molecular cell.

[50]  P. Jeggo,et al.  Cellular and Biochemical Impact of a Mutation in DNA Ligase IV Conferring Clinical Radiosensitivity* , 2001, The Journal of Biological Chemistry.

[51]  T L Blundell,et al.  FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. , 2001, Journal of molecular biology.

[52]  N. Grishin,et al.  Phosphatidylinositol phosphate kinase: a link between protein kinase and glutathione synthase folds. , 1999, Journal of molecular biology.

[53]  P. Jeggo,et al.  Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient , 1999, Current Biology.

[54]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[55]  T. Stamato,et al.  Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. , 1999, Mutation research.

[56]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[57]  S. Jackson,et al.  Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV , 1997, Current Biology.

[58]  M. Lieber,et al.  Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells , 1997, Nature.

[59]  S. Jackson,et al.  DNA-dependent protein kinase. , 1997, The international journal of biochemistry & cell biology.

[60]  A Sali,et al.  Comparative protein modeling by satisfaction of spatial restraints. , 1996, Molecular medicine today.

[61]  A G Murzin,et al.  Structural classification of proteins: new superfamilies. , 1996, Current opinion in structural biology.

[62]  D. Wigley,et al.  Crystal Structure of an ATP-Dependent DNA Ligase from Bacteriophage T7 , 1996, Cell.

[63]  M. Hyvönen,et al.  T7 vectors with modified T7lac promoter for expression of proteins in Escherichia coli. , 1996, Analytical biochemistry.

[64]  Andrej ⩽ali,et al.  Comparative protein modeling by satisfaction of spatial restraints , 1995 .

[65]  S. Shuman,et al.  RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases , 1995, Molecular microbiology.

[66]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[67]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[68]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[69]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[70]  Detection of protein-protein interactions using the GST fusion protein pull-down technique , 2004, Nature Methods.

[71]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[72]  Charlotte M. Deane,et al.  JOY: protein sequence-structure representation and analysis , 1998, Bioinform..

[73]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.