Structures, energetics, and spectra of aqua-cesium (I) complexes: an ab initio and experimental study.

The design of cesium-selective ionophores must include the nature of cesium-water interactions. The authors have carried out extensive ab initio and density functional theory calculations of hydrated cesium cations to obtain reasonably accurate energetics, thermodynamic quantities, and IR spectra. An extensive search was made to find the most stable structures. Since water...water interactions are important in the aqua-Cs+ clusters, the authors investigated the vibrational frequency shifts as a function of the number of water molecules and the frequency characteristics with and without the presence of outer-shell water molecules. The predicted vibrational frequencies were then compared with the infrared photodissociation spectra of argon-tagged hydrated cesium cluster ions. This comparison allowed the identification of specific hydrogen-bonding structures present in the experimental spectra.

[1]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[2]  Kwang S. Kim,et al.  STRUCTURES, ENERGETICS, AND SPECTRA OF AQUA-SODIUM(I) : THERMODYNAMIC EFFECTS AND NONADDITIVE INTERACTIONS , 1995 .

[3]  Nauta,et al.  Formation of cyclic water hexamer in liquid helium: the smallest piece of Ice , 2000, Science.

[4]  E. Glendening,et al.  Dication−Water Interactions: M2+(H2O)n Clusters for Alkaline Earth Metals M = Mg, Ca, Sr, Ba, and Ra , 1996 .

[5]  Han Myoung Lee,et al.  Structures, spectra, and electronic properties of halide-water pentamers and hexamers, X−(H2O)5,6 (X=F,Cl,Br,I): Ab initio study , 2002 .

[6]  E. Glendening,et al.  An extended basis set ab initio study of alkali metal cation–water clusters , 1967 .

[7]  Jongseob Kim,et al.  Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study , 1999 .

[8]  F. Jensen Structure and stability of complexes of glycine and glycine methyl analogs with H+, Li+, and Na+ , 1992 .

[9]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[10]  M. Berkowitz,et al.  Stabilization energies of Cl−, Br−, and I− ions in water clusters , 1993 .

[11]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[12]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[13]  T. Vaden,et al.  Evaporatively cooled M+ (H2O)Ar cluster ions: infrared spectroscopy and internal energy simulations. , 2004, The Journal of chemical physics.

[14]  Thomas J. Meyer,et al.  Comprehensive Coordination Chemistry II , 2004 .

[15]  J. D. Bene Proton affinities of ammonia, water, and hydrogen fluoride and their anions: a quest for the basis-set limit using the Dunning augmented correlation-consistent basis sets , 1993 .

[16]  N. Kestner,et al.  Energy‐structure relationships for microscopic solvation of anions in water clusters , 1994 .

[17]  Corey J. Weinheimer,et al.  Hydrogen bonding in metal ion solvation: vibrational spectroscopy of Cs+(CH3OH)1–6 in the 2.8 μm region , 1996 .

[18]  Mina Park,et al.  Dissolution nature of cesium fluoride by water molecules. , 2006, The journal of physical chemistry. B.

[19]  K. S. Kim,et al.  Ionophores and receptors using cation-pi interactions: collarenes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Han Myoung Lee,et al.  Aqua dissociation nature of cesium hydroxide. , 2004, The Journal of chemical physics.

[21]  D. R. Garmer,et al.  Metal substitution and the active site of carbonic anhydrase , 1992 .

[22]  Weber,et al.  Isolating the spectroscopic signature of a hydration shell with the use of clusters: superoxide tetrahydrate , 2000, Science.

[23]  J. Lisy Spectroscopy and structure of solvated alkali-metal ions , 1997 .

[24]  P. Schwerdtfeger,et al.  Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li ¿ to 119 ¿ , 2002 .

[25]  C. Klots Temperatures of evaporating clusters , 1987, Nature.

[26]  T. Zwier,et al.  Size-Specific Infrared Spectra of Benzene-(H2O)n Clusters (n = 1 through 7): Evidence for Noncyclic (H2O)n Structures , 1994, Science.

[27]  E. Glendening,et al.  Cation-Water Interactions: The M+(H2O)n Clusters for Alkali Metals, M = Li, Na, K, Rb, and Cs , 1995 .

[28]  P. B. Armentrout,et al.  Collision-induced dissociation measurements on Li+(H2O)n, n = 1-6: The first direct measurement of the Li+-OH2 bond energy , 1997 .

[29]  Han Myoung Lee,et al.  Comparative ab initio study of the structures, energetics and spectra of X−⋅(H2O)n=1–4 [X=F, Cl, Br, I] clusters , 2000 .

[30]  M. Defranceschi,et al.  Theoretical Investigation of Small Alkali Cation−Molecule Clusters: A Model Potential Approach , 2004 .

[31]  Axel Kulcke,et al.  Infrared spectroscopy of small size‐selected water clusters , 1996 .

[32]  Han Myoung Lee,et al.  Aqua–potassium(I) complexes: Ab initio study , 1999 .

[33]  Jongseob Kim,et al.  Charge transfer to solvent (CTTS) energies of small X−(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study , 2000 .

[34]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[35]  K. Jordan,et al.  Infrared Signature of Structures Associated with the H+(H2O)n (n = 6 to 27) Clusters , 2004, Science.

[36]  Kwang S. Kim,et al.  Ab Initio Study of the Structures, Energetics, and Spectra of Aquazinc(II) , 1996 .

[37]  Han Myoung Lee,et al.  Study of interactions of various ionic species with solvents toward the design of receptors , 2006 .

[38]  B Brutschy,et al.  The structure of microsolvated benzene derivatives and the role of aromatic substituents. , 2000, Chemical reviews.

[39]  P. Kebarle,et al.  Production and study in the gas phase of multiply charged solvated or coordinated metal ions , 1990 .

[40]  M. Berkowitz,et al.  Many-body effects in molecular dynamics simulations of Na +(H2O)n and Cl-(H2O) n clusters , 1991 .

[41]  A. Castleman,et al.  Thermochemical Data on Gas‐Phase Ion‐Molecule Association and Clustering Reactions , 1986 .

[42]  B. Moyer,et al.  Applicability of a Calixarene-Crown Compound for the Removal of Cesium from Alkaline Tank Waste , 1997 .

[43]  U. Buck,et al.  Structure and Spectra of Three-Dimensional ( H 2 O ) n Clusters, n = 8 , 9 , 10 , 1998 .

[44]  Kwang S. Kim,et al.  Solvent rearrangement for an excited electron of I−(H2O)6: Analog to structural rearrangement of e−(H2O)6 , 2003 .

[45]  J. Lisy,et al.  Vibrational predissociation spectroscopy of Cs+(H2O)1−5 , 1996 .

[46]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[47]  M. Berkowitz,et al.  Photodetachment spectra of Cl−(H2O)n clusters. Predictions and comparisons , 1997 .

[48]  P. Kebarle,et al.  Studies of alkaline earth and transition metal M++ gas phase ion chemistry , 1990 .

[49]  L. Pettersson,et al.  Core electron binding energies and auger electron energies of solvated clusters , 1985 .

[50]  S. Xantheas,et al.  Microscopic hydration of the fluoride anion , 1999 .

[51]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[52]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[53]  M. Probst A study of the additivity of interactions in cation-water systems , 1987 .

[54]  C. Bauschlicher,et al.  A theoretical study of Na(H2O)+n (n=1–4) , 1991 .

[55]  Charles W. Bock,et al.  Calcium Ion Coordination: A Comparison with That of Beryllium, Magnesium, and Zinc , 1996 .

[56]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[57]  P. Kebarle,et al.  Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n , 1970 .

[58]  J. Hynes,et al.  Frequency Shifts in the Hydrogen-Bonded OH Stretch in Halide−Water Clusters. The Importance of Charge Transfer , 2000 .

[59]  P. B. Armentrout,et al.  Sequential bond energies of water to Na+ (3s0), Mg+ (3s1), and Al+ (3s2) , 1994 .

[60]  David Feller,et al.  An extended basis set ab initio study of Li+(H2O)n, n=1–6 , 1994 .

[61]  Han Myoung Lee,et al.  Structures and spectra of iodide-water clusters I-(H2O)(n=1-6): An ab initio study , 2001 .

[62]  J. Glusker,et al.  Hydration Energies of Divalent Beryllium and Magnesium Ions: An ab Initio Molecular Orbital Study , 1996 .

[63]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[64]  Han Myoung Lee,et al.  Insights into the Structures, Energetics, and Vibrations of Monovalent Cation-(Water)1-6 Clusters † , 2004 .

[65]  Han Myoung Lee,et al.  Insights into the structures, energetics, and vibrations of aqua-rubidium(I) complexes: ab initio study. , 2004, The Journal of chemical physics.