An experimental study of melting of CCl4 in carbon nanotubes.

We report dielectric relaxation spectroscopy measurements of the melting point of carbon tetrachloride confined within open-tip multi-walled carbon nanotubes with two different pore diameters, 4.0 and 2.8 nm. In both cases, a single transition temperature well above the bulk melting point was obtained for confined CCl4. These results contrast with what was obtained in our previous measurements using carbon nanotubes with a pore diameter of 5.0 nm, where multiple transition temperatures both above and below the bulk melting point of CCl4 were observed. Our experimental measurements are consistent with our recent molecular simulation results (F. R. Hung, B. Coasne, E. E. Santiso, K. E. Gubbins, F. R. Siperstein and M. Sliwinska-Bartkowiak, J. Chem. Phys., 2005, 122, 144706). Although the simulations overestimate the temperatures in which melting upon confinement occurs, both simulations and experiments suggest that all regions of adsorbate freeze at the same temperature, and that freezing occurs at higher temperatures upon reduction of the pore diameter.

[1]  K. Gubbins,et al.  Molecular modeling of freezing of simple fluids confined within carbon nanotubes. , 2005, The Journal of chemical physics.

[2]  P. Koumoutsakos,et al.  Solidification of gold nanoparticles in carbon nanotubes. , 2005, Physical review letters.

[3]  K. Knorr,et al.  Dielectric response of acetonitrile condensed into mesoporous glass , 2004 .

[4]  K. Gubbins,et al.  Freezing/melting behaviour within carbon nanotubes , 2004 .

[5]  G. Dosseh,et al.  Cyclohexane and Benzene Confined in MCM-41 and SBA-15: Confinement Effects on Freezing and Melting , 2003 .

[6]  K. Knorr,et al.  Freezing and melting of Ar in mesopores studied by optical transmission , 2003 .

[7]  P. Nielaba,et al.  Phase transitions and quantum effects in pore condensates: a path integral Monte Carlo study. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  K. Morishige,et al.  X-ray Study of Freezing and Melting of Water Confined within SBA-15 , 2003 .

[9]  U. Raviv,et al.  Viscosity of ultra-thin water films confined between hydrophobic or hydrophilic surfaces , 2002 .

[10]  K. Knorr,et al.  Dielectric response of CO and Ar condensed into mesoporous glass , 2002 .

[11]  G. Buntkowsky,et al.  2H-Solid-State NMR Study of Benzene-d6 Confined in Mesoporous Silica SBA-15 , 2002 .

[12]  B. Persson,et al.  Frictional Properties of Straight-Chain Alcohols and the Dynamics of Layering Transitions , 2002 .

[13]  K. Gubbins,et al.  Effect of Confinement on Melting in Slit-Shaped Pores: Experimental and Simulation Study of Aniline in Activated Carbon Fibers , 2001 .

[14]  K. Knorr,et al.  Diffraction study of solid oxygen embedded in porous glasses , 2001 .

[15]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[16]  K. Knorr,et al.  Melting and freezing of Ar in nanopores , 2001 .

[17]  K. Gubbins,et al.  Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation , 2001 .

[18]  M. A. Alam,et al.  Freezing and Melting Behavior of CO2 in Nanometer Geometry , 2000 .

[19]  K. Morishige,et al.  Adsorption Isotherm and Freezing of Kr in a Single Cylindrical Pore , 2000 .

[20]  K. Higashitani,et al.  Solidification of Lennard-Jones Fluid in Cylindrical Nanopores and Its Geometrical Hindrance Effect: A Monte Carlo Study , 2000 .

[21]  K. Morishige,et al.  Freezing and melting of methanol in a single cylindrical pore: Dynamical supercooling and vitrification of methanol , 2000 .

[22]  Ravi Radhakrishnan,et al.  Effect of the fluid-wall interaction on freezing of confined fluids: Toward the development of a global phase diagram , 2000 .

[23]  S. Kittaka,et al.  X-ray Diffraction Study of Water Confined in Mesoporous MCM-41 Materials over a Temperature Range of 223−298 K , 2000 .

[24]  K. Kawano,et al.  Freezing and Melting of Nitrogen, Carbon Monoxide, and Krypton in a Single Cylindrical Pore , 2000 .

[25]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[26]  K. Knorr,et al.  SOLID N2 AND CO IN NANOPOROUS GLASSES , 1999 .

[27]  K. Knorr,et al.  Adsorption-desorption isotherms and x-ray diffraction of Ar condensed into a porous glass matrix , 1999 .

[28]  D. Morineau,et al.  Glass transition, freezing and melting of liquids confined in the mesoporous silicate MCM-41 , 1999 .

[29]  K. Morishige,et al.  FREEZING AND MELTING OF METHYL CHLORIDE IN A SINGLE CYLINDRICAL PORE : ANOMALOUS PORE-SIZE DEPENDENCE OF PHASE-TRANSITION TEMPERATURE , 1999 .

[30]  K. Gubbins,et al.  A Remarkable Elevation of Freezing Temperature of CCl4 in Graphitic Micropores , 1999 .

[31]  K. Gubbins,et al.  Phase Transitions in Pores: Experimental and Simulation Studies of Melting and Freezing† , 1999 .

[32]  K. Kaneko,et al.  Melting temperature elevation of benzene confined in graphitic micropores , 1999 .

[33]  K. Morishige,et al.  Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior , 1999 .

[34]  E. Kumacheva,et al.  Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions , 1998 .

[35]  K. Gubbins,et al.  A molecular simulation study of freezing/melting phenomena for Lennard-Jones methane in cylindrical nanoscale pores , 1997 .

[36]  E. Kumacheva,et al.  Confinement-Induced Phase Transitions in Simple Liquids , 1995, Science.

[37]  K. Gubbins,et al.  Effect of Confinement on Freezing of CCl4 in Cylindrical Pores , 2005 .

[38]  K. Gubbins,et al.  Freezing in Mesopores: Aniline in Silica Glasses and MCM-41 , 2002 .

[39]  K. Higashitani,et al.  Freezing point elevation in nanospace detected directly by atomic force microscopy , 2002 .

[40]  K. Gubbins,et al.  Dielectric studies of freezing behavior in porous materials: Water and methanol in activated carbon fibres , 2001 .

[41]  A. Schreiber,et al.  Melting and freezing of water in ordered mesoporous silica materials , 2001 .