Biological microstructures with high adhesion and friction. Numerical approach

Over the course of biological evolution, many classes of living creatures have developed highly effective adhesive mechanisms that allow them to attach to various kinds of surfaces having different physical natures and topographies. The most famous instance of this is the gecko pad, but many similar examples are found in animals of different sizes and evolutionary lineages. In recent decades, such adhesive structures have become the objects of intensive theoretical and experimental studies, partly due to research aimed at developing and producing artificial surfaces with similar adhesive properties. Here, we present a review of research on biological structures with high adhesion and high friction. We focus our attention on one particular class of such structures: systems with elastic fibers interacting with rough surfaces. Other structurally similar systems are discussed as well.

[1]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Carlo Menon,et al.  Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives , 2010 .

[3]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion , 2004, Journal of The Royal Society Interface.

[4]  Alexander Filippov,et al.  Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. , 2011, Journal of theoretical biology.

[5]  Stanislav N. Gorb,et al.  Sticky Feet: From Animals to Materials , 2007 .

[6]  Flexible tissue with fibres interacting with an adhesive surface , 2007 .

[7]  Nicola Pugno,et al.  Spatulate structures in biological fibrillar adhesion , 2010 .

[8]  Metin Sitti,et al.  Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives , 2006 .

[9]  S. Gorb,et al.  Evolution of locomotory attachment pads of hexapods , 2001, Naturwissenschaften.

[10]  Metin Sitti,et al.  Enhanced friction of elastomer microfiber adhesives with spatulate tips , 2007 .

[11]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[12]  Stanislav N. Gorb,et al.  Biological Micro- and Nanotribology: Nature’s Solutions , 2010 .

[13]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[14]  Nigel E. Stork,et al.  A scanning electron microscope study of tarsal adhesive setae in the Coleoptera , 1980 .

[15]  Metin Sitti,et al.  Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips , 2007 .

[16]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[17]  S N Gorb,et al.  Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. , 2008, Journal of insect physiology.

[18]  Matthias Scherge,et al.  Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects1 , 2002, Integrative and comparative biology.

[19]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[20]  S. Weiner,et al.  Strain-structure relations in human teeth using Moiré fringes. , 1997, Journal of biomechanics.

[21]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[22]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[23]  U. Hiller Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien , 1968, Zeitschrift für Morphologie der Tiere.

[24]  Bharat Bhushan,et al.  Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. , 2007, Ultramicroscopy.

[25]  Julian F. V. Vincent,et al.  Arthropod cuticle: A natural composite shell system , 2002 .

[26]  T. Weis-Fogh Molecular interpretation of the elasticity of resilin, a rubber-like protein , 1961 .

[27]  S. Gorb,et al.  Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae) , 2006, Journal of Experimental Biology.

[28]  Ralph Spolenak,et al.  Adhesion design maps for bio-inspired attachment systems. , 2005, Acta biomaterialia.

[29]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[30]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Weis-Fogh A Rubber-Like Protein in Insect Cuticle , 1960 .

[32]  To optimal elasticity of adhesives mimicking gecko foot-hairs , 2006 .

[33]  Ralph Spolenak,et al.  Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy , 2005, Biology Letters.

[34]  M Schargott,et al.  A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures , 2009, Bioinspiration & biomimetics.

[35]  Heinz Schwarz,et al.  Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera) , 2006, Journal of Comparative Physiology A.

[36]  Stanislav N. Gorb,et al.  Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae) , 2010, Journal of Comparative Physiology A.

[37]  Huajian Gao,et al.  Shape insensitive optimal adhesion of nanoscale fibrillar structures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  V. Popov Contact Mechanics and Friction , 2010 .

[39]  S. Gorb,et al.  Spring model of biological attachment pads. , 2006, Journal of theoretical biology.

[40]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[41]  Stanislav N Gorb,et al.  Spatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry , 2015, Interface Focus.

[42]  Bharat Bhushan,et al.  Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion' , 2006 .

[43]  S. Gorb,et al.  Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.

[44]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Timoshenko,et al.  Theory Of Elasticity. 2nd Ed. , 1951 .

[46]  Nigel E. Stork,et al.  The adherence of beetle tarsal setae to glass , 1983 .

[47]  R S Fearing,et al.  High friction from a stiff polymer using microfiber arrays. , 2006, Physical review letters.

[48]  Stanislav N Gorb,et al.  Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects , 2014, Beilstein journal of nanotechnology.

[49]  S. Gorb,et al.  Detailed three‐dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy , 2012, Journal of microscopy.

[50]  Stanislav N. Gorb,et al.  Friction and adhesion in the tarsal and metatarsal scopulae of spiders , 2006, Journal of Comparative Physiology A.

[51]  Bo N. J. Persson,et al.  On the mechanism of adhesion in biological systems , 2003 .

[52]  Bharat Bhushan,et al.  Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface , 2007 .

[53]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[54]  S. Gorb,et al.  Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach , 2010 .

[55]  Stanislav N. Gorb,et al.  The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  Bin Chen,et al.  Pre-tension generates strongly reversible adhesion of a spatula pad on substrate , 2009, Journal of The Royal Society Interface.

[57]  Stanislav N. Gorb,et al.  The effect of surface roughness on the adhesion of elastic plates with application to biological systems , 2003 .

[58]  Mehmet Sarikaya,et al.  Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth , 1999 .

[59]  P. Guttmann,et al.  Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy , 2008, Journal of Experimental Biology.

[60]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[61]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[62]  S. Gorb,et al.  Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata , 2013, Nature Communications.

[63]  Anand Jagota,et al.  Mechanics of Adhesion Through a Fibrillar Microstructure1 , 2002, Integrative and comparative biology.

[64]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.