Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome p450s.

[1]  W. Scheidt,et al.  A structural model for heme in high-spin ferric hemoproteins. Iron atom centering, porphinato core expansion, and molecular stereochemistry of high-spin diaquo(meso-tetraphenylporphinato)iron(III) perchlorate. , 1979, Biochemistry.

[2]  KobayashiHiroshi,et al.  Mössbauer Spectra of Iron Tetraphenylporphins , 1970 .

[3]  G. Loew,et al.  A role for Thr 252 in cytochrome P450cam oxygen activation. , 1994, Journal of the American Chemical Society.

[4]  P. Ohlsson,et al.  Electron paramagnetic resonance analyses of horseradish peroxidase in situ and after purification. , 1979, Biochemistry.

[5]  M. Rohmer Electronic ground state of iron(II)porphyrin. Ab initio SCF and CI calculations and computed electron deformation densities , 1985 .

[6]  M. Parrinello,et al.  Geometry and electronic structure of porphyrins and porphyrazines , 1996 .

[7]  James E. Roberts,et al.  Oxygen-17 ENDOR of horseradish peroxidase compound I , 1981 .

[8]  K. Hodgson,et al.  Iron-sulfur bond lengths in ferrous-CO heme complexes as a function of sulfur donor type , 1986 .

[9]  W. R. Browett,et al.  Magnetic circular dichroism study of porphyrin π cation radical species , 1981 .

[10]  H. Hori,et al.  Optical and magnetic measurements of horseradish peroxidase III. Electron paramagnetic resonance studies at liquid-hydrogen and -helium temperatures , 1972 .

[11]  J. Arnold,et al.  Tantalum Porphyrin Chemistry. Synthesis and Reactivity of Organometallic Derivatives and the X-ray Crystal Structure of the Sandwich Compound [Ta(OEP)2][TaCl6] , 1994 .

[12]  S. Sligar,et al.  Kinetic solvent isotope effects during oxygen activation by cytochrome P-450cam , 1994 .

[13]  Gilda H. Loew,et al.  Structure and Spectra of Ferrous Dioxygen and Reduced Ferrous Dioxygen Model Cytochrome P450 , 1998 .

[14]  Judith N. Burstyn,et al.  Magnetic and spectroscopic characterization of an iron porphyrin peroxide complex. Peroxoferrioctaethylporphyrin(1 , 1988 .

[15]  D. Dixon,et al.  Density functional theory prediction of the second-order hyperpolarizability of metalloporphines , 1995 .

[16]  K. Suslick,et al.  Moessbauer spectra of oxidized iron porphyrins , 1983 .

[17]  W. Eaton,et al.  Optically Detected Conformational Changes in Haemoglobin Single Crystals , 1974, Nature.

[18]  G. Loew,et al.  Determinants of the spin state of the resting state of cytochrome P450cam , 1993 .

[19]  H. Hori Analysis of the principal g-tensors in single crystals of ferrimyoglobin complexes. , 1971, Biochimica et biophysica acta.

[20]  J. Fischer,et al.  Synthesis, structure and spectroscopic properties of two models for the active site of the oxygenated state of cytochrome P540 , 1987 .

[21]  M. Zerner,et al.  Calculated optical spectrum of model oxyheme complex , 1980 .

[22]  S. Shaik,et al.  A theoretical study of electronic factors affecting hydroxylation by model ferryl complexes of cytochrome P-450 and horseradish peroxidase , 1999 .

[23]  D. Case,et al.  Density Functional Study on the Electronic Structures of Model Peroxidase Compounds I and II , 1997 .

[24]  Shigeru Obara,et al.  Ab initio MO studies of electronic states and Mössbauer spectra of high-, intermediate-, and low-spin Fe(II)-porphyrin complexes , 1982 .

[25]  K. Hodgson,et al.  Oxygenated cytochrome P-450-CAM and chloroperoxidase: direct evidence for sulfur donor ligation trans to dioxygen and structural characterization using EXAFS spectroscopy , 1986 .

[26]  M. Hendrich,et al.  Chemical nature of the porphyrin pi cation radical in horseradish peroxidase compound I. , 1983, Biochemistry.

[27]  David A. Case,et al.  DENSITY FUNCTIONAL/POISSON-BOLTZMANN CALCULATIONS OF REDOX POTENTIALS FOR IRON-SULFUR CLUSTERS , 1994 .

[28]  T. Noro,et al.  Ab initio CI calculations on free-base porphin , 1992 .

[29]  A. Gleizes,et al.  Tunable exchange interaction in .mu.-oxalato copper(II) dinuclear complexes , 1983 .

[30]  I. Morishima,et al.  Nuclear magnetic resonance studies of metalloporphyrin .pi.-cation radicals as models for compound I of peroxidases , 1984 .

[31]  H. Nakatsuji,et al.  Ground and excited states of carboxyheme: a SAC/SAC-CI study , 1996 .

[32]  T. Spiro,et al.  Resonance-raman evidence for anomalous heme structures in cytochrome c' from Rhodopseudomonas palustris. , 1974, Biochimica et biophysica acta.

[33]  R. Zwaans,et al.  Ab initio calculations on first-row transition metal porphyrins Part 2. Ground state spin multiplicities, calculated ionisation potentials and electron affinities and their relation to catalytic activity , 1996 .

[34]  G. Babcock,et al.  An ENDOR study of spin distributions in octaethylmetalloporphyrin .pi. cation radicals , 1989 .

[35]  C. Reed,et al.  Mössbauer effect study of the magnetic properties of S=1 ferrous tetraphenylporphyrin , 1978 .

[36]  G. Loew,et al.  Mechanistic origin of the correlation between spin state and spectra of model cytochrome P450 ferric heme proteins , 1993 .

[37]  S. Obara,et al.  Ab initio molecular orbital calculation of fe‐porphine with a double zeta basis set , 1981 .

[38]  Michael T. Green Evidence for Sulfur-Based Radicals in Thiolate Compound I Intermediates , 1999 .

[39]  T. Poulos,et al.  Resonance Raman spectroscopy shows different temperature‐dependent coordination equilibria for native horseradish and cytochrome c peroxidase , 1985, FEBS letters.

[40]  T. Poulos,et al.  High-resolution crystal structure of cytochrome P450cam. , 1987, Journal of molecular biology.

[41]  D. E. Benson,et al.  Reduced oxy intermediate observed in D251N cytochrome P450cam. , 1997, Biochemistry.

[42]  T. Poulos,et al.  Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. , 1998, Biochemistry.

[43]  J. Dawson,et al.  Cytochrome P-450 and chloroperoxidase: thiolate-ligated heme enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation , 1987 .

[44]  H. Goff,et al.  Solution characterization of copper(II) and silver(II) porphyrins and the one-electron oxidation products by nuclear magnetic resonance spectroscopy. , 1986, Journal of the American Chemical Society.

[45]  T. Poulos,et al.  Effect of the His175-->Glu mutation on the heme pocket architecture of cytochrome c peroxidase. , 1995, Biochemistry.

[46]  Y. Maeda,et al.  Mössbauer effect of metmyoglobin and its hydrogen peroxide compound. , 1971, Journal of biochemistry.

[47]  B. Hoffman,et al.  EPR and ENDOR detection of compound I from Micrococcus lysodeikticus catalase. , 1993, Biochemistry.

[48]  H Frauenfelder,et al.  Dynamics of ligand binding to myoglobin. , 1975, Biochemistry.

[49]  G. Loew,et al.  Investigation of the proton-assisted pathway to formation of the catalytically active, ferryl species of P450s by molecular dynamics studies of P450eryF. , 1996, Journal of the American Chemical Society.

[50]  R. Kappl,et al.  EPR‐spectroscopy of reduced oxyferrous‐P450cam , 1991, FEBS letters.

[51]  Theoretical determination of the electronic spectrum of free base porphin , 1994 .

[52]  J. Collins,et al.  Spin density distribution in oxygen-liganded model heme proteins: Predictions of 17O hyperfine broadening of ESR spectra of metmyoglobin, cytochrome c peroxidase, catalase, and cytochrome P450 , 1987 .

[53]  Neri,et al.  Fluoride binding in hemoproteins: the importance of the distal cavity structure , 1997, Biochemistry.

[54]  H. Schlegel,et al.  THERMOCHEMISTRY OF IRON CHLORIDES AND THEIR POSITIVE AND NEGATIVE IONS , 1996 .

[55]  A. Tasaki,et al.  Magnetic susceptibility measurements on hemoproteins down to 4.2°K , 1967 .

[56]  Philip J. Stephens,et al.  Optical spectra of oxy- and deoxyhemoglobin , 1978 .

[57]  T. Yonetani,et al.  Mössbauer spectroscopy of protohaem and mesohaem cytochrome c peroxidases and their fluorides , 1969 .

[58]  T. Poulos,et al.  Spectroscopic characterization of recombinant pea cytosolic ascorbate peroxidase: similarities and differences with cytochrome c peroxidase. , 1998, Biochemistry.

[59]  D. W. Smith,et al.  Analysis of the visible spectra of some sperm-whale ferrimyoglobin derivatives. , 1968, The Biochemical journal.

[60]  D. Dolphin,et al.  THE CHEMISTRY OF PORPHYRIN π‐CATIONS * , 1973 .

[61]  J. Pilbrow,et al.  Recent developments in the studies of molecular oxygen adducts of cobalt (II) compounds and related systems , 1981 .

[62]  A. Bearden,et al.  Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxide derivatives. , 1969, Biochemistry.

[63]  M. Segall,et al.  Evidence for stabilization of the low-spin state of cytochrome P450 due to shortening of the proximal heme bond. , 1998, Chemical research in toxicology.

[64]  Z. Herman,et al.  STRUCTURE, SPECTRA, AND FUNCTION OF MODEL CYTOCHROME P450 , 1981, Annals of the New York Academy of Sciences.

[65]  S. Martinis,et al.  A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation , 1989 .

[66]  Xiaoyuan Li,et al.  Resonance Raman spectroscopy reveals a1u vs. a2u character and pseudo-Jahn-Teller distortion in radical cations of nickel(II), copper(II), and chloroiron(III) octaethyl- and tetraphenylporphyrins , 1989 .

[67]  T. Yonetani,et al.  Yeast cytochrome c peroxidase. Coordination and spin states of heme prosthetic group. , 1987, The Journal of biological chemistry.

[68]  J. Deisenhofer,et al.  Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Poulos,et al.  X-ray absorption studies of intermediates in peroxidase activity. , 1984, Archives of biochemistry and biophysics.

[70]  J. Kraut,et al.  Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy. , 1988, Biochemistry.

[71]  G. Loew,et al.  Theoretical studies of high-, intermediate-, and low-spin model heme complexes , 1989 .

[72]  Abhik Ghosh Substituent Effects on Valence Ionization Potentials of Free Base Porphyrins: A Local Density Functional Study , 1995 .

[73]  Nicholas C. Handy,et al.  A study of O3, S3, CH2, and Be2 using Kohn–Sham theory with accurate quadrature and large basis sets , 1993 .

[74]  P. G. Gassman,et al.  Substituent Effects in Porphyrazines and Phthalocyanines , 1994 .

[75]  T. Yonetani,et al.  Magnetic susceptibility measurements of cytochrome c peroxidase and its complexes. , 1971, The Journal of biological chemistry.

[76]  J. Griffith,et al.  Ferrihemoprotein Hydroxides: A Correlation Between Magnetic and Spectroscopic Properties , 1964 .

[77]  C. R. Connell,et al.  Letter: Origin of the anomalous Soret spectra of carboxycytochrome P-450. , 1976, Journal of the American Chemical Society.

[78]  C. Reynolds An AM1 theoretical study of the structure and electronic properties of porphyrin , 1988 .

[79]  W. Trager,et al.  Intrinsic isotope effects suggest that the reaction coordinate symmetry for the cytochrome P-450 catalyzed hydroxylation of octane is isozyme independent. , 1990, Journal of medicinal chemistry.

[80]  G. Maggiora,et al.  Electronic structure of porphyrins. All-valence-electron SCF MO CI calculations of the spectra of dianion and free base porphin , 1973 .

[81]  P. George,et al.  A MAGNETOCHEMICAL STUDY OF EQUILIBRIA BETWEEN HIGH AND LOW SPIN STATES OF METMYOGLOBIN COMPLEXES. , 1964, Biochemistry.

[82]  Abhik Ghosh Theoretical Comparative Study of Free Base Porphyrin, Chlorin, Bacteriochlorin, and Isobacteriochlorin: Evaluation of the Potential Roles of ab Initio Hartree−Fock and Density Functional Theories in Hydroporphyrin Chemistry , 1997 .

[83]  S. Sligar,et al.  Coupling of spin, substrate, and redox equilibria in cytochrome P450. , 1976, Biochemistry.

[84]  B C Finzel,et al.  Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. , 1986, Biochemistry.

[85]  Russell S. Drago,et al.  Nature of the bound oxygen in a series of cobalt dioxygen adducts , 1976 .

[86]  J Deisenhofer,et al.  Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. , 1993, Science.

[87]  A. Schweiger,et al.  On the Origin of the Low-Spin Character of Cytochrome P450cam in the Resting State-Investigations of Enzyme Models with Pulse EPR and ENDOR Spectroscopy. , 1998, Angewandte Chemie.

[88]  J. Baker,et al.  Spin contamination in density functional theory , 1993 .

[89]  C. Mcauliffe,et al.  The status of molecular orbital calculations on porphyrins and their complexes , 1975 .

[90]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides , 1979 .

[91]  B. Hoffman,et al.  Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin pi-cation radical. , 1981, The Journal of biological chemistry.

[92]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[93]  Y. Mizutani,et al.  Resonance Raman pursuit of the change from iron(II)-oxygen (FeII-O2) to iron(III)-hydrohxyl (FeIII-OH) via iron(IV):oxygen (FeIV:O) in the autoxidation of ferrous iron-porphyrin , 1990 .

[94]  G. Babcock,et al.  Resonance Raman vibrational analysis of Cu sup II , Fe sup III , and Co sup III porphyrin. pi. cation radicals and their meso-deuteriated analogues , 1989 .

[95]  S. Martinis,et al.  Investigations of the resonance Raman excitation profiles of cytochrome P450cam , 1987 .

[96]  D. Goldfarb,et al.  Evidence for Water Binding to the Fe Center in Cytochrome P450cam Obtained by 17O Electron Spin-Echo Envelope Modulation Spectroscopy , 1995 .

[97]  Michael C. Zerner,et al.  A generalized restricted open-shell Fock operator , 1987 .

[98]  Matthew D. Segall,et al.  First principles calculation of the activity of cytochrome P450 , 1998 .

[99]  A. Veillard,et al.  Ab Initio Calculations of Metalloporphyrins , 1982 .

[100]  H Koga,et al.  Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Kraut,et al.  Single-crystal resonance Raman spectroscopy of site-directed mutants of cytochrome c peroxidase. , 1990, Biochemistry.

[102]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[103]  Michael T. Green ROLE OF THE AXIAL LIGAND IN DETERMINING THE SPIN STATE OF RESTING CYTOCHROME P450 , 1998 .

[104]  A. Veillard,et al.  Structure and properties of a model of deoxyheme, an ab initio SCF calculation , 1983 .

[105]  M. Zerner,et al.  Porphyrins: VIII. Extended Hckel calculations on iron complexes , 1966 .

[106]  C. Jefcoate,et al.  Ligand interactions with hemoprotein P-450. II. Influence of phenobarbital and methylcholanthrene induction processes on P-450 spectra. , 1969, Biochemistry.

[107]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene , 1980 .

[108]  Gilda H. Loew,et al.  THEORETICAL INVESTIGATION OF THE PROTON ASSISTED PATHWAY TO FORMATION OF CYTOCHROME P450 COMPOUND I , 1998 .

[109]  C. Reed,et al.  Nuclear magnetic resonance investigation of magnetic and electronic properties of "intermediate spin" ferrous porphyrin complexes. , 1977, Journal of the American Chemical Society.

[110]  G. Palmer The electron paramagnetic resonance of metalloproteins. , 1985, Biochemical Society transactions.