The Signature of Primordial Grain Growth in the Polarized Light of the AU Microscopii Debris Disk

We have used the Hubble Space Telescope Advanced Camera for Surveys coronagraph to make the first polarization maps of the AU Microscopii debris disk. The polarization rises from 5% at 20 AU to 40% at 80 AU. The polarization is perpendicular to the disk, indicating that the scattered light originates from micron-sized grains in an optically thin disk. Disk models show that interior to the ‘‘birth ring’’ (40Y50 AU) there is a hole in the dust distribution where micron-sized dust is depleted by a factor of more than 300. The disk is collision dominated, and grains that fall inward due to drag forces undergo a destructive collision. The presence of this hole implies that the localized enhancements in surface brightness that occur at projected radii interior to the birth ring are caused by nonaxisymmetric structures in the outer disk. The grains exhibit strong forward scattering and high polarization. Spherical grains composed of conventional materials cannot reproduce these optical properties. A Mie/MaxwellGarnett analysis demands highly porous (91%Y94%) particles. In the inner solar system, porous particles form in cometary dust, where the sublimation of ices leaves a ‘‘bird’s nest’’ of refractory material. In AU Mic, the grain porosity may be primordial, because the dust birth ring lies beyond the ice sublimation point. The observed porosities span the range of values implied by laboratory studies of particle coagulation by ballistic clustercluster aggregation. To avoid compactification, the upper size limit for the parent bodies is in the decimeter range, in agreement with theoretical predictions based on collisional lifetime arguments. Consequently, AU Mic may exhibit thesignatureoftheprimordialagglomerationprocesswherebyinterstellargrainsfirstassembledtoformmacroscopic objects. Subject headingg circumstellar matter — dust, extinction — planetary systems: formation — polarization — stars: individual (AU Mic, GJ 803)

[1]  R. Wolstencroft,et al.  Optical polarization in the disc around β Pictoris , 1991 .

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  Hiroshi Suto,et al.  First Two-Micron Imaging Polarimetry of β Pictoris , 2006, astro-ph/0603344.

[5]  Ludmilla Kolokolova,et al.  Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres , 2006 .

[6]  Adaptive Optics Imaging of the AU Microscopii Circumstellar Disk: Evidence for Dynamical Evolution , 2004, astro-ph/0412143.

[7]  M. Kundu,et al.  Microwave observations of the flare stars UV Ceti, AT Microscopii, and AU Microscopii , 1987 .

[8]  Michael C. Liu,et al.  Substructure in the Circumstellar Disk Around the Young Star AU Microscopii , 2004, Science.

[9]  B. Pettersen,et al.  Search for linear polarization in solar neighborhood flare stars and spotted stars , 1981 .

[10]  G. Schmidt,et al.  The Hubble Space Telescope Northern-Hemisphere Grid of Stellar Polarimetric Standards , 1992 .

[11]  The Disk of ? Pictoris in the Light of Polarimetric Data , 2000 .

[12]  P. Artymowicz BETA PICTORIS: An Early Solar System? , 1997 .

[13]  J. M. Greenberg,et al.  From interstellar dust to comets - A unification of observational constraints , 1990 .

[14]  K. Stapelfeldt,et al.  A Spitzer Study of Dusty Disks around Nearby, Young Stars , 2005 .

[15]  E. Krugel The Physics of Interstellar Dust , 2002 .

[16]  Close stellar encounters with planetesimal discs: the dynamics of asymmetry in the β Pictoris system , 2000, astro-ph/0011279.

[17]  M. Franx,et al.  Hubble Space Telescope ACS Multiband Coronagraphic Imaging of the Debris Disk around β Pictoris , 2006 .

[18]  N. Kiselev,et al.  Polarimetry and Photometry of Comet C/1996 B2 Hyakutake , 1998 .

[19]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[20]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[21]  R. White,et al.  Polarization in reflection nebulae. I - Scattering properties of interstellar grains , 1979 .

[22]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[23]  Michael S. Bessell,et al.  The β Pictoris Moving Group , 2001 .

[24]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[25]  Oswald H. W. Siegmund,et al.  Future EUV/UV and visible space astrophysics missions and instrumentation : 22-23 August 2002, Waikoloa, Hawaii, USA , 2003 .

[26]  DUST DYNAMICS, SURFACE BRIGHTNESS PROFILES, AND THERMAL SPECTRA OF DEBRIS DISKS: THE CASE OF AU MICROSCOPII , 2005, astro-ph/0510527.

[27]  K. Jockers,et al.  Light Scattering by Aggregates with Sizes Comparable to the Wavelength: An Application to Cometary Dust , 2000 .

[28]  Arianna Giusto,et al.  Optical Properties of Composite Interstellar Grains: A Morphological Analysis , 2004 .

[29]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .

[30]  V. Kozhurina-Platais,et al.  ACS Polarization Calibration - II. The POLV Filter Angles , 2004 .

[31]  Brenda C. Matthews,et al.  Discovery of a Large Dust Disk Around the Nearby Star AU Microscopii , 2004, Science.

[32]  J. Walsh,et al.  ACS Polarization Calibration - I. Introduction and Status Report , 2004 .

[33]  J. Blum,et al.  Experiments on Preplanetary Dust Aggregation , 1998 .

[34]  A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars , 2004, astro-ph/0403131.

[35]  J. Blum,et al.  Experiments on Sticking, Restructuring, and Fragmentation of Preplanetary Dust Aggregates , 2000 .

[36]  R. H. Stoy,et al.  Fundamental Data for Southern Stars (First List) , 1957 .

[37]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[38]  G. Schneider,et al.  Analysis of Polarized Light with NICMOS , 2000 .

[39]  David A. Golimowski,et al.  Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk , 2005 .

[40]  D. F. Merriam,et al.  Annual review of earth and planetary sciences v. 7, Editor: F. A. Donath; Associate Editors: F. G. Stehli, and G. W. Wetherill, Annual Reviews, Inc., 4139 El Camino Way, Palo Alto, California, 94036, 1979, 517p., 17 (U.S.), 17.50 elsewhere , 1980 .

[41]  On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics , 2006, astro-ph/0604313.

[42]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[43]  R. Wolstencroft,et al.  Properties of theβ pictoris disc deduced from optical imaging polarimetry , 1995 .