Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors

Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5c€/kWh.

[1]  M. Valdés,et al.  Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors , 2009 .

[2]  John B. Kitto,et al.  Steam: Its Generation and Use , 1992 .

[3]  A. Rovira,et al.  Optimization of Brayton cycles for low-to-moderate grade thermal energy sources , 2013 .

[4]  S. X. Chu,et al.  Analysis of terrestrial solar radiation exergy , 2009 .

[5]  Eduardo Zarza,et al.  Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid , 2014 .

[6]  Lorin L. Vant-Hull,et al.  Solar Power Plants: Fundamentals, Technology, Systems, Economics , 1991 .

[7]  Rubén Abbas,et al.  High concentration linear Fresnel reflectors , 2013 .

[8]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .

[9]  Rubén Abbas,et al.  Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors , 2012 .

[10]  D. Buie,et al.  The effect of circumsolar radiation on a solar concentrating system , 2004 .

[11]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[12]  Jürgen Dersch,et al.  Comparison of Linear Fresnel and Parabolic Trough Collector Systems - System Analysis to determine Break Even Costs of Linear Fresnel Collectors , 2009 .

[13]  C. Choudhury,et al.  A fresnel strip reflector-concentrator for tubular solar-energy collectors , 1986 .

[14]  R. Abbas,et al.  Solar radiation concentration features in Linear Fresnel Reflector arrays , 2012 .

[15]  José María Martínez-Val Peñalosa,et al.  Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas , 2012 .

[16]  T. Trainer Solar Thermal Electricity , 2007 .

[17]  Aman Dang,et al.  Concentrators: A review , 1986 .

[18]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[19]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[20]  Xiaoxi Yang,et al.  Design of new molten salt thermal energy storage material for solar thermal power plant , 2013 .

[21]  Umberto Desideri,et al.  Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations , 2013 .

[22]  T. C. Kandpal,et al.  Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber , 1990 .

[23]  G. Morrison,et al.  Compact Linear Fresnel Reflector solar thermal powerplants , 2000 .

[24]  Robert Pitz-Paal,et al.  Methodology for optimized operation strategies of solar thermal power plants with integrated heat storage , 2011 .

[25]  Markus Eck,et al.  LINEAR FRESNEL COLLECTOR DEMONSTRATION ON THE PSA PART II – COMMISSIONING AND FIRST PERFORMNCE TESTS , 2008 .

[26]  Maziar Arjomandi,et al.  The energetic performance of a novel hybrid solar thermal & chemical looping combustion plant , 2014 .

[27]  María José Montes,et al.  Thermofluidynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam, or Molten Salt as Heat Transfer Fluids , 2010 .

[28]  José María Martínez-Val Peñalosa,et al.  Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors , 2009 .

[29]  G. H. Babcock,et al.  Steam / its generation and use , 1972 .

[30]  X. Py,et al.  Corrosion effects between molten salts and thermal storage material for concentrated solar power plants , 2012 .

[31]  José M. Martínez-Val,et al.  Thermal regimes in solar-thermal linear collectors , 2011 .

[32]  Tara C. Kandpal,et al.  Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—I. Mirror elements of varying width , 1991 .

[33]  María José Montes,et al.  Energy management in solar thermal power plants with double thermal storage system and subdivided solar field , 2011 .

[34]  Gonzalo Guillén-Gosálbez,et al.  Multi-objective design of reverse osmosis plants integrated with solar Rankine cycles and thermal energy storage , 2013 .

[35]  Suresh V. Garimella,et al.  Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants , 2013 .

[36]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[37]  Graham L. Morrison,et al.  Optimization of parabolic trough solar collector system , 2006 .

[38]  Markus Eck,et al.  Road map towards the demonstration of a linear Fresnel collector using single tube receiver , 2006 .

[39]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[40]  Umberto Desideri,et al.  Analysis and comparison between a concentrating solar and a photovoltaic power plant , 2014 .

[41]  L. Wald,et al.  On the clear sky model of the ESRA — European Solar Radiation Atlas — with respect to the heliosat method , 2000 .

[42]  Doerte Laing,et al.  Advanced Thermal Energy Storage Technology for Parabolic Trough , 2004 .

[43]  I. Dincer,et al.  Exergy methods for assessing and comparing thermal storage systems , 2003 .

[44]  Hongguang Jin,et al.  Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China , 2014 .

[45]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[46]  Tara C. Kandpal,et al.  Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator , 1989 .

[47]  T. Srinivas,et al.  Design and modeling of low temperature solar thermal power station , 2012 .

[48]  Suresh V. Garimella,et al.  System-level simulation of a solar power tower plant with thermocline thermal energy storage , 2014 .

[49]  D. Azofra,et al.  Comparison of the influence of biomass, solar-thermal and small hydraulic power on the Spanish electricity prices by means of artificial intelligence techniques. , 2014 .

[50]  Panna Lal Singh,et al.  Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers , 2010 .

[51]  Antonio L. Avila-Marin,et al.  Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends , 2013 .