Atomic layer epitaxy of Si on Ge(100) using Si2Cl6 and atomic hydrogen

The surface composition is measured during atomic layer epitaxy (ALE) growth of Si on Ge(100) using Si2Cl6 and atomic hydrogen (Hat) at TS=400 °C. During each Si2Cl6 exposure, Si is adsorbed until Cl fully terminates the surface, making the Si deposition step self‐limiting. The terminating Cl layer is removed by Hat exposure. At 400 °C, H2 rapidly desorbs from Ge(100) and Si/Ge alloy surfaces, regenerating the surface dangling bonds for the next Si2Cl6 adsorption cycle. A thin alloy is grown epitaxially on the Ge(100) substrate, which displays a linear increase in Si content and a linear decrease in Ge content, measured over 1–20 Si ALE cycles.

[1]  T. Bramblett,et al.  Mechanisms and kinetics of Si atomic‐layer epitaxy on Si(001)2×1 from Si2H6 , 1991 .

[2]  Markus Pessa,et al.  atomic layer epitaxy , 1986, Catalysis from A to Z.

[3]  J. Nishizawa,et al.  Molecular layer epitaxy of GaAs , 1993 .

[4]  F. G. McIntosh,et al.  Silicon monolayer growth using dichlorosilane and hydrogen in a near atmospheric pressure chemical vapor deposition reactor , 1993 .

[5]  S. Gates,et al.  Surface morphology of Si on Si(100) grown below 500 °C using H/Cl exchange chemistry , 1993 .

[6]  S. Gates,et al.  Facile abstraction of chemisorbed D on Si(100) by atomic H , 1993 .

[7]  F. Mcfeely,et al.  Atomic layer epitaxy of silicon by dichlorosilane studied with core level spectroscopy , 1992 .

[8]  Kenji Aoki,et al.  Silicon molecular layer epitaxy , 1990 .

[9]  W. J. Choyke,et al.  Atomic H : a reagent for the extraction of chemical species from Si surfaces , 1993 .

[10]  J. Rabalais Scattering and Recoiling Spectrometry: An Ion's Eye View of Surface Structure , 1990, Science.

[11]  Stephen M. Cohen,et al.  Hydrogen-halogen chemistry on semiconductor surfaces , 1993 .

[12]  Masakiyo Matsumura,et al.  Atomic layer epitaxy of Si using atomic H , 1993 .

[13]  M. Sakuraba,et al.  Silicon atomic layer growth controlled by flash heating in chemical vapor deposition using SiH4 gas , 1993 .

[14]  S. Gates Comparison of chemical schemes for silicon atomic layer epitaxy , 1992 .

[15]  L.Y.L. Shen The observation of superstructures on carbon-covered Ge(100) surface by high energy electron diffraction , 1975 .

[16]  T. Miller,et al.  Adsorption and thermal reactions of disilane and the growth of Si films on Ge(100)-(2×1) , 1993 .

[17]  Si Atomic Layer Epitaxy Based on Si2H6 and Remote He Plasma Bombardment , 1992 .

[18]  J. E. Crowell,et al.  Investigation on the growth rate enhancement by Ge during SiGe alloy deposition by chemical vapor deposition , 1992 .

[19]  K. Kavanagh,et al.  Thin epitaxial Ge-Si(111) films: Study and control of morphology , 1987 .

[20]  Daniel D. Koleske,et al.  Precursors for Si atomic layer epitaxy: Real time adsorption studies on Si(100) , 1992 .

[21]  W. K. Liu,et al.  A RHEED study of the surface reconstructions of Si(001) during gas source MBE using disilane , 1992 .

[22]  T. Urisu,et al.  Self-Limiting Adsorption of SiCl 2 H 2 and Its Application to the Layer-by-Layer Photochemical Process , 1991 .

[23]  S. Imai,et al.  A Novel Atomic Layer Epitaxy Method of Silicon , 1991 .

[24]  Homer D. Hagstrum,et al.  Theory of Auger Ejection of Electrons from Metals by Ions , 1954 .

[25]  K. Waters,et al.  Atomic Beam Modifications of Insulator Surfaces , 1993 .

[26]  Daniel D. Koleske,et al.  Epitaxial Si films on Ge(100) grown via H/Cl exchange , 1993 .

[27]  W. Eckstein Direct recoil sputtering and secondary ion production , 1987 .