A creep–fatigue crack growth model containing temperature and interactive effects

Abstract A trinomial superposition model containing a temperature parameter and accounting for creep–fatigue interactive effect for predicting creep–fatigue crack growth rates is proposed in this paper. Items and parameters in the model are investigated via fatigue crack growth experiments with 0 s and 90 s dwell time at different elevated temperatures on a nickel-based powder metallurgy superalloy FGH97. The results indicate a good capability of the proposed model in correlating the crack growth rate with creep–fatigue interactive effect. The model is also validated by available test results of Alloy 718 at 550 °C and 650 °C with various dwell times.

[1]  Jing Xu,et al.  Effect of thermal treatment on the fatigue crack propagation behavior of a new Ni-base superalloy , 2008 .

[2]  A. K. Koul,et al.  Damage-tolerance-based life prediction of aeroengine compressor discs: II. A probabilistic fracture mechanics approach , 1990 .

[3]  Faramarz Djavanroodi,et al.  Creep-Fatigue Crack Growth Interaction in Nickel Base Supper Alloy , 2008 .

[4]  A. Saxena Fracture Mechanics Approaches for Characterizing Creep-Fatigue Crack Growth , 1993 .

[5]  Jianyu Zhang,et al.  Creep-fatigue crack growth behaviour of a nickel-based powder metallurgy superalloy under high temperature , 2011 .

[6]  Wang Zheng-dong TIME-DEPENDENT FATIGUE FRACTURE THEORY AND RESIDUAL LIFE ASSESSMENT TECHNIQUES FOR DEFECTIVE STRUCTURES , 2005 .

[7]  S Marie,et al.  Fatigue and creep–fatigue crack growth in 316 stainless steel cracked plates at 650°C , 2001 .

[8]  S. Antolovich,et al.  Fatigue crack propagation behavior of a single crystalline superalloy , 1990 .

[9]  A. T. Price,et al.  Crack propagation under creep conditions in a quenched % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9h , 1973 .

[10]  Andreas Klenk,et al.  Creep fatigue crack behavior of two power plant steels , 2001 .

[11]  K. Sadananda,et al.  Crack Growth Behavior in Alloy 718 at 425°C , 1978 .

[12]  P. C. Paris,et al.  The fracture mechanics approach to fatigue. , 1964 .

[13]  Tomas Månsson,et al.  High temperature fatigue crack growth in Alloy 718 - Effect of tensile hold times , 2011 .

[14]  David Gustafsson,et al.  High temperature fatigue crack growth behaviour of Inconel 718 under hold time and overload conditions , 2013 .

[15]  R. F. Hall,et al.  Elevated temperature fatigue crack growth under dwell conditions in Waspaloy , 1997 .

[16]  M. B Henderson,et al.  Evaluation of standard life assessment procedures and life extension methodologies for fracture-critical components , 2001 .

[17]  V. Lupinc,et al.  The effect of creep and oxidation on high-temperature fatigue crack propagation in 〈001〉-loaded CMSX-2 superalloy single crystals , 1995 .

[18]  V. Shlyannikov,et al.  Fracture analysis of turbine disks and computational–experimental background of the operational decisions , 2001 .

[19]  A. Pineau,et al.  ELEVATED TEMPERATURE FATIGUE CRACK GROWTH IN ALLOY 718—PART II: EFFECTS OF ENVIRONMENTAL AND MATERIAL VARIABLES , 1993 .

[20]  Grover,et al.  Modelling the effect of creep–fatigue interaction on crack growth , 1999 .

[21]  G. Odemer,et al.  Prediction of creep–fatigue crack growth rates in inert and active environments in an aluminium alloy , 2009 .

[22]  Jin Ho Lee,et al.  An interpretation of the Ct parameter for increasing load conditions , 1999 .

[23]  Alexander M. Korsunsky,et al.  Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation , 2009 .

[24]  Robert P. Wei,et al.  Influence of dwell time on fatigue crack growth in nickel-base superalloys , 2002 .

[25]  David L. McDowell,et al.  CREEP‐FATIGUE CRACK GROWTH BEHAVIOR IN 1Cr‐1Mo‐0.25V STEEL. PART II: CRACK GROWTH BEHAVIOR AND MODELS , 1996 .

[26]  Jianyu Zhang,et al.  Crack growth behaviour of a nickel-based powder metallurgy superalloy under elevated temperature , 2011 .