Molecular-level understanding of interfacial carbonates in stabilizing CuO-ZnO(Al2O3) catalysts

[1]  H. King,et al.  Mind the Interface Gap: Exposing Hidden Interface Defects at the Epitaxial Heterostructure between CuO and Cu2O , 2022, ACS applied materials & interfaces.

[2]  M. E. Borges,et al.  Solvent Additive-Induced Deactivation of the Cu–ZnO(Al2O3)-Catalyzed γ-Butyrolactone Hydrogenolysis: A Rare Deactivation Process , 2021, Industrial & engineering chemistry research.

[3]  F. Studt,et al.  Unravelling the Zn‐Cu Interaction during Activation of a Zn‐promoted Cu/MgO Model Methanol Catalyst , 2021, ChemCatChem.

[4]  M. Trari,et al.  Photocatalytic hydrogen production on the hetero-junction CuO/ZnO , 2020 .

[5]  A. Jensen,et al.  The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts , 2020 .

[6]  I. Melián-Cabrera Temperature control in DRIFT cells used for in situ and operando studies: where do we stand today? , 2020, Physical chemistry chemical physics : PCCP.

[7]  D. Palagin,et al.  The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol , 2020, Nature Communications.

[8]  A. A. Mohamad,et al.  DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review , 2020 .

[9]  Sunil Kumar,et al.  ZnO/CuO nanocomposites from recycled printed circuit board: preparation and photocatalytic properties , 2019, Environmental Science and Pollution Research.

[10]  R. Schlögl,et al.  Activating a Cu/ZnO : Al Catalyst – Much More than Reduction: Decomposition, Self‐Doping and Polymorphism , 2019, ChemCatChem.

[11]  G. Hutchings,et al.  Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation , 2018, Catalysis Today.

[12]  Bartolomeo Civalleri,et al.  Quantum‐mechanical condensed matter simulations with CRYSTAL , 2018 .

[13]  J. Fierro,et al.  Highly active Cu/ZnO–Al catalyst for methanol synthesis: effect of aging on its structure and activity , 2018, RSC advances.

[14]  S. Woodley,et al.  Why Are Polar Surfaces of ZnO Stable , 2017 .

[15]  G. Hutchings,et al.  The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. , 2017, Faraday discussions.

[16]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[17]  G. Hutchings,et al.  A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04130b Click here for additional data file. , 2017, Chemical science.

[18]  R. Schlögl,et al.  Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales. , 2016, Angewandte Chemie.

[19]  Kristin A. Persson,et al.  Surface energies of elemental crystals , 2016, Scientific Data.

[20]  R. Schlögl,et al.  Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates , 2016 .

[21]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[22]  I. Tanaka,et al.  Band structure diagram paths based on crystallography , 2016, 1602.06402.

[23]  G. Hutchings,et al.  Stable amorphous georgeite as a precursor to a high-activity catalyst , 2016, Nature.

[24]  A. Mishra,et al.  CuO Surfaces and CO2 Activation: A Dispersion-Corrected DFT+U Study , 2016 .

[25]  R. Schlögl,et al.  Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts , 2015 .

[26]  Seongjae Cho,et al.  A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application , 2015 .

[27]  R. Schlögl,et al.  Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst , 2014 .

[28]  Julia Schumann,et al.  Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts , 2014 .

[29]  S. Kühl,et al.  Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study. , 2014, Chemistry.

[30]  Javier Pérez-Ramírez,et al.  New and revisited insights into the promotion of methanol synthesis catalysts by CO2 , 2013 .

[31]  Yuhan Sun,et al.  Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2013 .

[32]  Gerbrand Ceder,et al.  Efficient creation and convergence of surface slabs , 2013 .

[33]  K. P. Jong,et al.  Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts , 2013 .

[34]  Atsushi Takagaki,et al.  Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations , 2013 .

[35]  R. Schlögl,et al.  Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al. , 2013, Journal of the American Chemical Society.

[36]  Limin He,et al.  Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester , 2013 .

[37]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[38]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[39]  N. Harrison,et al.  An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(110) surface. , 2011 .

[40]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[41]  Qiang Liu,et al.  Reinvestigation of Dehydration and Dehydroxylation of Hydrotalcite-like Compounds through Combined TG-DTA-MS Analyses , 2010 .

[42]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[43]  R. Dovesi,et al.  Search and Characterization of Transition State Structures in Crystalline Systems Using Valence Coordinates , 2010 .

[44]  C. Zicovich-Wilson,et al.  Mechanism of F− Elimination from Zeolitic D4R Units: A Periodic B3LYP Study on the Octadecasil Zeolite , 2010 .

[45]  S. Kühl,et al.  Phase-pure Cu,Zn,Al Hydrotalcite-like Materials as Precursors for Copper rich Cu/ZnO/Al2O3 Catalysts , 2010 .

[46]  M. Behrens Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts , 2009 .

[47]  E. Gaigneaux,et al.  Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. , 2009, Chemistry.

[48]  R. Schlögl,et al.  Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture , 2009 .

[49]  J. Pérez‐Ramírez,et al.  Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction. , 2007, Chemistry.

[50]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[51]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[52]  Rufino M. Navarro,et al.  Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 , 2003 .

[53]  R. Schlögl,et al.  Continuous coprecipitation of catalysts in a micromixer: nanostructured Cu/ZnO composite for the synthesis of methanol. , 2003, Angewandte Chemie.

[54]  R. Schlögl,et al.  Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. , 2003, Chemistry.

[55]  G. Vayssilov,et al.  Characterization of Oxide Surfaces and Zeolites by Carbon Monoxide as an IR Probe Molecule , 2003 .

[56]  Junji Nakamura,et al.  On the Issue of the Active Site and the Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts , 2003 .

[57]  Martyn V. Twigg,et al.  Deactivation of Copper Metal Catalysts for Methanol Decomposition, Methanol Steam Reforming and Methanol Synthesis , 2003 .

[58]  J. Fierro,et al.  Structural Reversibility of a Ternary CuO-ZnO-Al2O3ex Hydrotalcite-Containing Material During Wet Pd Impregnation , 2002 .

[59]  J. Fierro,et al.  Pd-Modified Cu-Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures: Catalytic Structures and Performance , 2002 .

[60]  J. Fierro,et al.  Reverse Topotactic Transformation of a Cu–Zn–Al Catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures , 2002 .

[61]  M. Sahimi,et al.  A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide , 2002 .

[62]  V. Koleva,et al.  Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[63]  J. Fierro,et al.  Thermal decomposition of a hydrotalcite-containing Cu–Zn–Al precursor: thermal methods combined with an in situ DRIFT study , 2002 .

[64]  B. V. L’vov Mechanism and kinetics of thermal decomposition of carbonates , 2002 .

[65]  G. Emig,et al.  Reaction kinetics of the liquid-phase hydrogenation of succinic anhydride on CuZnO-catalysts with varying copper-to-zinc ratios in a three-phase slurry reactor , 2002 .

[66]  Masami Takeuchi,et al.  The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed , 2001 .

[67]  G. Thornton,et al.  Stability of polar oxide surfaces. , 2001, Physical review letters.

[68]  Yoshinori Kanamori,et al.  Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2 — effects of the calcination and reduction conditions on the catalytic performance , 2001 .

[69]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[70]  Nicholas M. Harrison,et al.  Chlorine adsorption on the Cu(111) surface , 1999, cond-mat/9911481.

[71]  H. Lutz,et al.  Infrared and Raman spectroscopy in inorganic solids research , 1999 .

[72]  T. Stanimirova,et al.  Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases , 1999 .

[73]  R. Frost,et al.  Infrared emission spectroscopic study of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts , 1999 .

[74]  J. Fierro,et al.  CO2 hydrogenation over Pd-modified methanol synthesis catalysts , 1998 .

[75]  Jean-Claude Lavalley,et al.  Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules , 1996 .

[76]  M. Rahaman Ceramic Processing and Sintering , 1995 .

[77]  T. M. Yurieva Catalyst for methanol synthesis: Preparation and activation , 1995 .

[78]  C. Rhodes,et al.  Water-gas shift reaction: finding the mechanistic boundary , 1995 .

[79]  D. Dollimore,et al.  The application of constant rate thermal analysis to the study of the thermal decomposition of copper hydroxy carbonate , 1994 .

[80]  N. Harrison,et al.  AB INITIO STUDY OF ZNO (1010) SURFACE RELAXATION , 1994 .

[81]  F. Marabelli,et al.  Evidence of localized states in the optical gap of CuO , 1994 .

[82]  Hess,et al.  Hartree-Fock study of phase changes in ZnO at high pressure. , 1993, Physical review. B, Condensed matter.

[83]  H. Lutz,et al.  Hydrogen bonding in basic copper salts: a spectroscopic study of malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4 , 1993 .

[84]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[85]  Fabrizio Cavani,et al.  Hydrotalcite-type anionic clays: Preparation, properties and applications. , 1991 .

[86]  Roberto Dovesi,et al.  ON THE ELASTIC PROPERTIES OF LITHIUM, SODIUM AND POTASSIUM OXIDE - AN AB INITIO STUDY , 1991 .

[87]  Roberto Dovesi,et al.  Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea , 1990 .

[88]  Jeffrey A. Nichols,et al.  Strategies for walking on potential energy surfaces using local quadratic approximations , 1990 .

[89]  R. Herman,et al.  Methanol synthesis catalysts based on cesium/copper/zinc oxide/metal oxide (metal = aluminum, chromium, gallium): genesis from coprecipitated hydrotalcite-like precursors, solid-state chemistry, morphology, and stability , 1989 .

[90]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[91]  K. Kihara,et al.  ANHARMONIC THERMAL VIBRATIONS IN Zno , 1985 .

[92]  C. Serna,et al.  IR characteristics of hydrotalcite-like compounds , 1985, Physics and Chemistry of Minerals.

[93]  T. C. Mcgill,et al.  Lattice match: An application to heteroepitaxy , 1984 .

[94]  D. Kohl,et al.  Variations of work function and surface conductivity on clean cleaved zinc oxide surfaces by annealing and by hydrogen adsorption , 1980 .

[95]  Shigeo Miyata Physico-Chemical Properties of Synthetic Hydrotalcites in Relation to Composition , 1980 .

[96]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[97]  Shigeo Miyata The Syntheses of Hydrotalcite-Like Compounds and Their Structures and Physico-Chemical Properties—I: the Systems Mg2+-Al3+-NO3−, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO4−, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl− , 1975 .

[98]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[99]  P. Süsse Verfeinerung der Kristallstruktur des Malachits, Cu2(OH)2CO3 , 1966, Naturwissenschaften.

[100]  L. Pastero,et al.  Epitaxy: a methodological approach to the study of an old phenomenon , 2022, CrystEngComm.

[101]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[102]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[103]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[104]  V. Rives,et al.  High-temperature transformations of Cu-rich hydrotalcites , 2004 .

[105]  F. Kapteijn,et al.  In situ investigation of thethermal decomposition of Co–Al hydrotalcite in different atmospheres , 2001 .

[106]  G. Millar,et al.  Characterization of precursors to methanol synthesis catalysts Cu/ZnO system , 1998 .

[107]  Peter Pulay,et al.  Geometry optimization in redundant internal coordinates , 1992 .

[108]  D. Vučelič,et al.  Thermal characteristics of a synthetic hydrotalcite-like material , 1992 .

[109]  K. C. Waugh,et al.  Synthesis of Methanol , 1988 .