Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form

We present structure-preserving numerical methods for the eigenvalue problem of complex palindromic pencils. Such problems arise in control theory, as well as from palindromic linearizations of higher degree palindromic matrix polynomials. A key ingredient of these methods is the development of an appropriate condensed form --- the anti-triangular Schur form. Ill-conditioned problems with eigenvalues near the unit circle, in particular near $\pm 1$, are discussed. We show how a combination of unstructured methods followed by a structured refinement can be used to solve such problems accurately.

[1]  R. Byers,et al.  Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems , 2008 .

[2]  Sabine Zaglmayr,et al.  Eigenvalue problems in SAW-filter simulations. , 2002 .

[3]  John Greenstadt,et al.  Some numerical experiments in triangularizing matrices , 1962 .

[4]  Wenchang Chu,et al.  Abel's method on summation by parts and terminating well-poised q-series identities , 2007 .

[5]  C. Schröder URV decomposition based structured methods for palindromic and even eigenvalue problems , 2007 .

[6]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[7]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[8]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[9]  U. Langer,et al.  Finite-element simulation of wave propagation in periodic piezoelectric SAW structures , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[11]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[12]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[13]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[14]  Christian Mehl,et al.  On Asymptotic Convergence of Nonsymmetric Jacobi Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[15]  Patricia J. Eberlein,et al.  On the Schur Decomposition of a Matrix for Parallel Computation , 1985, IEEE Transactions on Computers.

[16]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[17]  Christian Mehl,et al.  Jacobi-like Algorithms for the Indefinite Generalized Hermitian Eigenvalue Problem , 2004, SIAM J. Matrix Anal. Appl..

[18]  J. Greenstadt A method for finding roots of arbitrary matrices , 1955 .

[19]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[20]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[21]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[22]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[23]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[24]  E. Chu,et al.  Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms , 2008 .

[25]  F. R. Gantmakher The Theory of Matrices , 1984 .

[26]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .