On two numerical methods for state-constrained elliptic control problems

A linear-quadratic elliptic control problem with pointwise box constraints on the state is considered. The state constraints are treated by a Lavrentiev type regularization. It is shown that the Lagrange multipliers associated with the regularized state constraints are functions in L 2. Moreover, the convergence of the regularized controls is proven for regularization parameter tending to zero. To solve the problem numerically, an interior point method and a primal–dual active set strategy are implemented and treated in function space.

[1]  A. Seeger Recent advances in optimization , 2006 .

[2]  Fredi Tröltzsch,et al.  Optimal Control of PDEs with Regularized Pointwise State Constraints , 2006, Comput. Optim. Appl..

[3]  Helmut Maurer,et al.  Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints. Part 2: Distributed Control , 2001, Comput. Optim. Appl..

[4]  Fredi Tröltzsch,et al.  Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems , 2008, Numerische Mathematik.

[5]  Fredi Tröltzsch,et al.  On an Elliptic Optimal Control Problem with Pointwise Mixed Control-State Constraints , 2006 .

[6]  Stefan Ulbrich,et al.  Superlinear Convergence of Affine-Scaling Interior-Point Newton Methods for Infinite-Dimensional Nonlinear Problems with Pointwise Bounds , 2000, SIAM J. Control. Optim..

[7]  Kazufumi Ito,et al.  Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces , 2000 .

[8]  Fredi Tröltzsch,et al.  The convergence of an interior point method for an elliptic control problem with mixed control-state constraints , 2008, Comput. Optim. Appl..

[9]  Karl Kunisch,et al.  On the structure of Lagrange multipliers for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[10]  Martin Weiser,et al.  Interior Point Methods in Function Space , 2005, SIAM J. Control. Optim..

[11]  Helmut Maurer,et al.  Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints: Part 1. Boundary Control , 2000, Comput. Optim. Appl..

[12]  Hans D. Mittelmann,et al.  Solving elliptic control problems with interior point and SQP methods: control and state constraints , 2000 .

[13]  Anton Schiela,et al.  The Control Reduced Interior Point Method. A Function Space Oriented Algorithmic Approach , 2006 .

[14]  Fredi Tröltzsch,et al.  Regular Lagrange Multipliers for Control Problems with Mixed Pointwise Control-State Constraints , 2005, SIAM J. Optim..

[15]  Enrico Miglierina,et al.  Recent advances in optimization , 2003 .

[16]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[17]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[18]  Karl Kunisch,et al.  Primal-Dual Strategy for State-Constrained Optimal Control Problems , 2002, Comput. Optim. Appl..

[19]  Arnd Rösch,et al.  Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems , 2002, SIAM J. Optim..

[20]  T. Grund,et al.  Optimal control of a linear elliptic equation with a supremum norm functional , 2001 .

[21]  Karl Kunisch,et al.  Lagrange multipliers structure for state constrained optimal control , 2002 .

[22]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .