Computing Quasi-Upward Planar Drawings of Mixed Graphs

A mixed graph has both directed and undirected edges. We study how to compute a crossing-free drawing of an embedded planar mixed graph, such that it is upward ‘as much as possible’. Roughly speaking, in an upward drawing of a mixed graph all (undirected) edges are monotone in the vertical direction and directed edges flow monotonically from bottom to top according to their orientation. We study quasi-upward drawings of mixed graphs, that is, upward drawings where edges can break the vertical monotonicity in a finite number of edge points, called bends. We describe both efficient heuristic techniques and exact approaches for computing quasi-upward planar drawings of embedded mixed graphs with few bends, and we extensively compare them experimentally: the results suggest that our algorithms are effective in many cases.

[1]  Amin Saberi,et al.  Forced Orientation of Graphs , 2011 .

[2]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[3]  Sarmad Abbasi,et al.  Improving the running time of embedded upward planarity testing , 2010, Inf. Process. Lett..

[4]  Achilleas Papakostas Upward Planarity Testing of Outerplanar Dags , 1994, Graph Drawing.

[5]  Walter Didimo,et al.  Quasi-Upward Planar Drawings of Mixed Graphs with Few Bends: Heuristics and Exact Methods , 2014, WALCOM.

[6]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[7]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[8]  Franz-Josef Brandenburg,et al.  Upward planar drawings on the standing and the rolling cylinders , 2014, Comput. Geom..

[9]  Hermann Stamm,et al.  On Feedback Problems in Planar Digraphs , 1990, WG.

[10]  Patrick Healy,et al.  Computing maximum upward planar subgraphs of single-source embedded digraphs , 2013, J. Comb. Optim..

[11]  Markus Chimani,et al.  Upward Planarity Testing: A Computational Study , 2013, Graph Drawing.

[12]  Alexander Wolff,et al.  Universal Point Sets for Drawing Planar Graphs with Circular Arcs , 2014 .

[13]  Emilio Di Giacomo,et al.  Switch-Regular Upward Planarity Testing of Directed Trees , 2011, J. Graph Algorithms Appl..

[14]  Csaba D. Tóth,et al.  On the Upward Planarity of Mixed Plane Graphs , 2013, Graph Drawing.

[15]  F. Boesch,et al.  ROBBINS'S THEOREM FOR MIXED MULTIGRAPHS , 1980 .

[16]  Patrick Healy,et al.  Two Fixed-parameter Tractable Algorithms for Testing Upward Planarity , 2006, Int. J. Found. Comput. Sci..

[17]  A. John MINING GRAPH DATA , 2022 .

[18]  Emilio Di Giacomo,et al.  Switch-Regular Upward Planar Embeddings of Trees , 2010, WALCOM.

[19]  Walter Didimo,et al.  Maximum Upward Planar Subgraphs of Embedded Planar Digraphs , 2007, Graph Drawing.

[20]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[21]  Emilio Di Giacomo,et al.  Upward straight-line embeddings of directed graphs into point sets , 2010, Comput. Geom..

[22]  Markus Chimani,et al.  Upward Planarization Layout , 2011, J. Graph Algorithms Appl..

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Markus Chimani,et al.  Upward Planarity Testing via SAT , 2012, GD.

[25]  Roberto Tamassia,et al.  Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its Applications) , 2007 .

[26]  Hubert Y. Chan,et al.  A Parameterized Algorithm for Upward Planarity Testing , 2004 .

[27]  Xuemin Lin,et al.  A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..

[28]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[29]  Michael Jünger,et al.  Graph Drawing Software , 2003, Graph Drawing Software.

[30]  Antonios Symvonis,et al.  Unilateral Orientation of Mixed Graphs , 2009, SOFSEM.

[31]  杉山 公造 Graph drawing and applications : for software and knowledge engineers , 2002 .

[32]  Walter Didimo Upward Planar Drawings and Switch-regularity Heuristics , 2006, J. Graph Algorithms Appl..

[33]  Walter Didimo,et al.  Upward Planarity Testing of Embedded Mixed Graphs , 2011, GD.

[34]  Md. Saidur Rahman,et al.  Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three , 2007, WALCOM.

[35]  Walter Didimo,et al.  Upward Embeddings and Orientations of Undirected Planar Graphs , 2001, WADS.

[36]  Patrick Healy,et al.  Fixed-Parameter Tractable Algorithms for Testing Upward Planarity , 2005, SOFSEM.

[37]  Tamara Mchedlidze Reprint of: Upward planar embedding of an n-vertex oriented path on O(n2) points , 2014, Comput. Geom..

[38]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.

[39]  Michael Kaufmann,et al.  An Approach for Mixed Upward Planarization , 2001, J. Graph Algorithms Appl..

[40]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[41]  Markus Chimani,et al.  Layer-free upward crossing minimization , 2008, JEAL.

[42]  Walter Didimo,et al.  Upward Spirality and Upward Planarity Testing , 2005, SIAM J. Discret. Math..

[43]  Christian Bachmaier,et al.  Classification of Planar Upward Embedding , 2011, Graph Drawing.

[44]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[45]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[46]  C. Lucchesi,et al.  A Minimax Theorem for Directed Graphs , 1978 .

[47]  Walter Didimo,et al.  Graph Visualization and Data Mining , 2006 .

[48]  Patrick Healy,et al.  A Fully Dynamic Algorithm to Test the Upward Planarity of Single-Source Embedded Digraphs , 2009, GD.

[49]  Christian Bachmaier,et al.  The Duals of Upward Planar Graphs on Cylinders , 2012, WG.

[50]  Peter Eades A FAST EFFECTIVE HEURISTIC FOR THE FEEDBACK ARC SET PROBLEM , 1993 .

[51]  Walter Didimo,et al.  Network visualization for financial crime detection , 2014, J. Vis. Lang. Comput..

[52]  Walter Didimo,et al.  Upward and quasi-upward planarity testing of embedded mixed graphs , 2014, Theor. Comput. Sci..