Structure-activity relationship of the ionic cocrystal: 5-amino-2-naphthalene sulfonate·ammonium ions for pharmaceutical applications

[1]  Sreenivas Enaganti,et al.  Molecular docking and pharmacophore studies of heterocyclic compounds as Heat shock protein 90 (Hsp90) Inhibitors , 2016, Bioinformation.

[2]  S. Velaga,et al.  Vibrational analysis and chemical activity of paracetamol–oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach , 2016 .

[3]  A. Ramazani,et al.  Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three- component synthesis of 1,2-dihydro-1-aryl-naphtho(1,2-e)(1,3)oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: single crystal X-ray structure analysis and theoretical study , 2016 .

[4]  A. Kennedy,et al.  Ionic cocrystals of pharmaceutical compounds : sodium complexes of carbamazepine , 2014 .

[5]  S. Pandya,et al.  Synthesis of novel Naphthalene COX inhibitors for anti-inflammatory activity , 2012 .

[6]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[7]  S. Jia,et al.  Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors. , 2010, European journal of medicinal chemistry.

[8]  Lucia Maini,et al.  From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. , 2010, Chemical communications.

[9]  S. Lindquist,et al.  HSP90 at the hub of protein homeostasis: emerging mechanistic insights , 2010, Nature Reviews Molecular Cell Biology.

[10]  J. San Román,et al.  Structure, morphology, and bioactivity of biocompatible systems derived from functionalized acrylic polymers based on 5-amino-2-naphthalene sulfonic acid. , 2010, Biomacromolecules.

[11]  P. Matousek,et al.  Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy , 2010 .

[12]  S. Mohan,et al.  Biological and phytochemical investigations of Goniothalamus umbrosus leaves hexane extract , 2009 .

[13]  M. Heravi,et al.  A Novel and Efficient Catalyst to One‐Pot Synthesis of 2‐Amino‐4H‐Chromenes by Methanesulfonic Acid , 2008 .

[14]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[15]  Paul Workman,et al.  Drugging the Cancer Chaperone HSP90 , 2007, Annals of the New York Academy of Sciences.

[16]  B. Blagg,et al.  Hsp90 inhibitors: Small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation , 2006, Medicinal research reviews.

[17]  Sarah J. Nehm,et al.  Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation , 2006 .

[18]  S. Lindquist,et al.  HSP90 and the chaperoning of cancer , 2005, Nature Reviews Cancer.

[19]  Sheng-Nan Wu,et al.  Biological study of naphthalene derivatives with antiinflammatory activities , 2003 .

[20]  M. Spackman,et al.  Fingerprinting intermolecular interactions in molecular crystals , 2002 .

[21]  P. G. Byrom,et al.  A novel definition of a molecule in a crystal , 1997 .

[22]  D. Seebach,et al.  β-Peptides: a surprise at every turn , 1997 .

[23]  S. Knapp Synthesis of Complex Nucleoside Antibiotics , 1995 .

[24]  T. Leisinger,et al.  Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids , 1987, Applied and environmental microbiology.

[25]  Purnendu K. Dasgupta,et al.  Fluorescence Properties of Metal Complexes of 8-Hydroxyquinoline-5-sulfonic Acid and Chromatographic Applications , 1987 .

[26]  M. Ohno,et al.  Stereocontrolled synthesis of (+)-negamycin from an acyclic homoallylamine by 1,3-asymmetric induction , 1982 .