Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale

Abstract A methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) sampling is applied to a real accidental radioactive release that occurred on a continental scale at the end of May 1998 near Algeciras, Spain. The source parameters (i.e., source location and strength) are reconstructed from a limited set of measurements of the release. Annealing and adaptive procedures are implemented to ensure a robust and effective parameter-space exploration. The simulation setup is similar to an emergency response scenario, with the simplifying assumptions that the source geometry and release time are known. The Bayesian stochastic algorithm provides likely source locations within 100 km from the true source, after exploring a domain covering an area of approximately 1800 km × 3600 km. The source strength is reconstructed with a distribution of values of the same order of magnitude as the upper end of the range reported by the Spanish Nuclear Security Agency. By running the Bayesian MCMC algorit...

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Fue-Sang Lien,et al.  Efficiently characterizing the origin and decay rate of a nonconservative scalar using probability theory , 2007 .

[3]  D. L. Ermak,et al.  A Real-Time Atmospheric Dispersion Modeling System , 1999 .

[4]  William G. Hanley,et al.  Event Reconstruction for Atmospheric Releases Employing Urban Puff Model UDM with Stochastic Inversion Methodology , 2005 .

[5]  Donald L. Ermak,et al.  A Lagrangian stochastic diffusion method for inhomogeneous turbulence , 2000 .

[6]  Arthur A. Mirin,et al.  Sequential Monte-Carlo Framework for Dynamic Data-Driven Event Reconstruction for Atmospheric Release , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[7]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[8]  Alexander Baklanov,et al.  Parameterisation of radionuclide deposition in atmospheric long-range transport modelling , 2001 .

[9]  G. Graziani,et al.  RTMOD: Real-Time MODel evaluation , 2000 .

[10]  Marc Bocquet Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications , 2005 .

[11]  P. Robins,et al.  Realtime sequential inference of static parameters with expensive likelihood calculations , 2009 .

[12]  Marc Bocquet,et al.  Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory , 2005 .

[13]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[14]  Sue Ellen Haupt,et al.  Source Characterization with a Genetic Algorithm–Coupled Dispersion–Backward Model Incorporating SCIPUFF , 2007 .

[15]  B. Kosović,et al.  Source Inversion for Contaminant Plume Dispersion in Urban Environments Using Building-Resolving Simulations , 2005 .

[16]  Janusz A. Pudykiewicz,et al.  APPLICATION OF ADJOINT TRACER TRANSPORT EQUATIONS FOR EVALUATING SOURCE PARAMETERS , 1998 .

[17]  Matthias Beekmann,et al.  Bayesian Monte Carlo analysis applied to regional‐scale inverse emission modeling for reactive trace gases , 2007 .

[18]  G Johannesson,et al.  Dynamic Bayesian Models via Monte Carlo - An Introduction with Examples - , 2004 .

[19]  G. Sugiyama,et al.  New meteorological data assimilation model for real-time emergency response , 1997 .

[20]  R. Errico What is an adjoint model , 1997 .

[21]  Julie K. Lundquist,et al.  Synthetic Event Reconstruction Experiments for Defining Sensor Network Characteristics , 2005 .

[22]  Boris Katz,et al.  Recent Changes Implemented into the Global Forecast System at NMC , 1991 .

[23]  Hiromi Yamazawa Long-range Dispersion Analysis on Accidental Atmospheric Release of Cesium-137 at Algeciras. , 1999 .

[24]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[25]  Eugene Yee,et al.  Bayesian probabilistic approach for inverse source determination from limited and noisy chemical or biological sensor concentration measurements , 2007, SPIE Defense + Commercial Sensing.

[26]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[27]  Fue-Sang Lien,et al.  Bayesian inference for source determination with applications to a complex urban environment , 2007 .

[28]  Sue Ellen Haupt,et al.  Improving pollutant source characterization by better estimating wind direction with a genetic algorithm , 2007 .

[29]  Robert L. Buckley,et al.  Modeling atmospheric deposition from a Cesium release in Spain using a stochastic transport model , 1999 .

[30]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .