A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogoliubov's recursion

The Bogoliubov recursion is a particular procedure appearing in the process of renormalization in perturbative quantum field theory. It provides convergent expressions for otherwise divergent integrals. We develop here a theory of functional identities for noncommutative Rota-Baxter algebras which is shown to encode, among others, this process in the context of Connes-Kreimer's Hopf algebra of renormalization. Our results generalize the seminal Cartier-Rota theory of classical Spitzer-type identities for commutative Rota-Baxter algebras. In the classical, commutative, case, these identities can be understood as deriving from the theory of symmetric functions. Here, we show that an analogous property holds for noncommutative Rota-Baxter algebras. That is, we show that functional identities in the noncommutative setting can be derived from the theory of noncommutative symmetric functions. Lie idempotents, and particularly the Dynkin idempotent play a crucial role in the process. Their action on the pro-unipotent groups such as those of perturbative renormalization is described in detail along the way.

[1]  N. Bergeron,et al.  The Hopf algebras of non-commutative symmetric functions and quasi-symmetric functions are free and cofree , 2005 .

[2]  Marcelo Aguiar,et al.  Pre-Poisson Algebras , 2000 .

[3]  Le Bois-Marie,et al.  Integrable Renormalization II : the general case , 2004 .

[4]  Maria O. Ronco,et al.  Primitive elements in a free dendriform algebra , 1999 .

[5]  D. Manchon Hopf algebras, from basics to applications to renormalization , 2004, math/0408405.

[6]  B. Sagan The Symmetric Group , 2001 .

[7]  J. Plebański,et al.  Combinatorial approach to Baker-Campbell-Hausdorff exponents , 1970 .

[8]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[9]  R. Strichartz The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations , 1987 .

[10]  Dirk Kreimer,et al.  On the Hopf algebra structure of perturbative quantum field theories , 1997 .

[11]  Frédéric Chapoton,et al.  Dialgebras and Related Operads , 2001 .

[12]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[13]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[14]  G. Baxter,et al.  AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS FROM A SIMPLE ALGEBRAIC IDENTITY , 1960 .

[15]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[16]  Pierre Cartier,et al.  On the structure of free baxter algebras , 1972 .

[17]  J. Ros,et al.  From time-ordered products to Magnus expansion , 2000 .

[18]  Matilde Marcolli,et al.  Renormalization, the Riemann–Hilbert Correspondence, and Motivic Galois Theory , 2004, hep-th/0411114.

[19]  C. Reutenauer Free Lie Algebras , 1993 .

[20]  W. D. Suijlekom The Hopf Algebra of Feynman Graphs in Quantum Electrodynamics , 2006 .

[21]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[22]  Li Guo,et al.  Birkhoff Type Decompositions and the Baker–Campbell–Hausdorff Recursion , 2006, math-ph/0602004.

[23]  Frederic Chapoton,et al.  Pre-Lie algebras and the rooted trees operad , 2000 .

[24]  Kurusch Ebrahimi-Fard,et al.  NEW IDENTITIES IN DENDRIFORM ALGEBRAS , 2007, 0705.2636.

[25]  F. Spitzer A Combinatorial Lemma and its Application to Probability Theory , 1956 .

[26]  D. Kreimer Anatomy of a gauge theory , 2005, hep-th/0509135.

[27]  Louis Solomon On the Poincaré-Birkhoff-Witt theorem , 1968 .

[28]  Dirk Kreimer Chen’s iterated integral represents the operator product expansion , 1999 .

[29]  Gian-Carlo Rota,et al.  Baxter algebras and combinatorial identities. II , 1969 .

[30]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[31]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 2001 .

[32]  K. Ebrahimi-Fard Loday-Type Algebras and the Rota–Baxter Relation , 2002 .

[33]  Christophe Reutenauer,et al.  On Dynkin and Klyachko Idempotents in Graded Bialgebras , 2002, Adv. Appl. Math..

[34]  TOPICAL REVIEW: The Hopf algebra approach to Feynman diagram calculations , 2005, hep-th/0510202.

[35]  Hector Figueroa,et al.  Combinatorial Hopf algebras in quantum field theory. I , 2005 .

[36]  Li Guo,et al.  Spitzer's identity and the algebraic Birkhoff decomposition in pQFT , 2004, hep-th/0407082.

[37]  Trees, set compositions and the twisted descent algebra , 2005, math/0512227.

[38]  Frédéric Patras,et al.  Rota–Baxter Algebras and New Combinatorial Identities , 2006, math/0701031.

[39]  Jean-Louis Loday,et al.  Trialgebras and families of polytopes , 2002 .

[40]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[41]  F. Patras La décomposition en poids des algèbres de Hopf , 1993 .

[42]  Quantum fields and motives , 2005, hep-th/0504085.

[43]  W. Zlmmbrmann Convergence of Bogoliubov’s Method of Renormalization in Momentum Space , 2000 .

[44]  A. Connes,et al.  Renormalization and motivic Galois theory , 2004, math/0409306.

[45]  J. Thibon,et al.  Polynomial realizations of some trialgebras , 2006, math/0605061.

[46]  F. Atkinson,et al.  Some aspects of Baxter's functional equation , 1963 .

[47]  Li Guo,et al.  Integrable renormalization I: The ladder case , 2004, hep-th/0402095.

[48]  F. Patras,et al.  A Lie Theoretic Approach to Renormalization , 2006, hep-th/0609035.

[49]  H. Figueroa,et al.  HOPF ALGEBRAS IN DYNAMICAL SYSTEMS THEORY , 2007 .

[50]  Frederic Chapoton Un théorème de Cartier–Milnor–Moore–Quillen pour les bigèbres dendriformes et les algèbres braces , 2000 .

[51]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[52]  Dominique Manchon,et al.  Hopf Algebras in Renormalisation , 2008 .

[53]  Renormalization of Gauge Fields: A Hopf Algebra Approach , 2006, hep-th/0610137.