Nonparametric estimator of the tail dependence coefficient: balancing bias and variance
暂无分享,去创建一个
[1] I. Gijbels,et al. Choice of smoothing parameter in multivariate copula-based tail coefficients , 2022, Journal of Statistical Planning and Inference.
[2] Hendrik Supper,et al. A comparison of tail dependence estimators , 2020, Eur. J. Oper. Res..
[3] Raphael Huser,et al. Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes , 2017, Journal of the American Statistical Association.
[4] Matthieu Garcin,et al. Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates , 2017 .
[5] Paola Zuccolotto,et al. Dynamic tail dependence clustering of financial time series , 2017 .
[6] Jennifer L. Wadsworth,et al. Modeling Spatial Processes with Unknown Extremal Dependence Class , 2017, Journal of the American Statistical Association.
[7] Matthieu Garcin,et al. Non-parametric news impact curve: a variational approach , 2017, Soft Computing.
[8] D. Guégan,et al. Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact , 2015 .
[9] Chi Xie,et al. Tail dependence structure of the foreign exchange market: A network view , 2016, Expert Syst. Appl..
[10] G. McLachlan,et al. Advances in Data Analysis and Classification , 2015 .
[11] P. Zuccolotto,et al. Dynamic tail dependence clustering of financial time series , 2015, Statistical Papers.
[12] Volker Schmidt,et al. Joint distributions for total lengths of shortest-path trees in telecommunication networks , 2015, Ann. des Télécommunications.
[13] Giovanni De Luca,et al. A tail dependence-based dissimilarity measure for financial time series clustering , 2011, Adv. Data Anal. Classif..
[14] J. Segers. Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.
[15] T. Takeuchi,et al. Copula cosmology: Constructing a likelihood function , 2010, 1011.4997.
[16] E. Habib,et al. Estimation of tail dependence coefficient in rainfall accumulation fields , 2009 .
[17] Qingqing Mao,et al. FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE , 2009, 0909.5187.
[18] F. Serinaldi. Analysis of inter-gauge dependence by Kendall’s τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields , 2008 .
[19] P. Embrechts,et al. Dependence modeling with copulas , 2007 .
[20] J. Segers,et al. A Method of Moments Estimator of Tail Dependence , 2007, 0710.2039.
[21] Anne-Catherine Favre,et al. Importance of Tail Dependence in Bivariate Frequency Analysis , 2007 .
[22] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[23] C. Klüppelberg,et al. Estimating the tail dependence function of an elliptical distribution , 2007 .
[24] Rafael Schmidt,et al. Non‐parametric Estimation of Tail Dependence , 2006 .
[25] Olivier Scaillet,et al. Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..
[26] Dominique Guégan,et al. Empirical estimation of tail dependence using copulas: application to Asian markets , 2005 .
[27] Markus Junker,et al. Estimating the tail-dependence coefficient: Properties and pitfalls , 2005 .
[28] Robert A. Lordo,et al. Nonparametric and Semiparametric Models , 2005, Technometrics.
[29] B. Rémillard,et al. Test of independence and randomness based on the empirical copula process , 2004 .
[30] M. Wegkamp,et al. Weak Convergence of Empirical Copula Processes , 2004 .
[31] J. Tawn,et al. Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications , 2004 .
[32] Mario V. Wüthrich,et al. Tail Dependence from a Distributional Point of View , 2003 .
[33] O. Scaillet,et al. Nonparametric Estimation of Copulas for Time Series , 2002 .
[34] A. Juri,et al. Copula convergence theorems for tail events , 2002 .
[35] Yannick Malevergne,et al. Testing the Gaussian copula hypothesis for financial assets dependences , 2001, cond-mat/0111310.
[36] Christian Genest,et al. On the multivariate probability integral transformation , 2001 .
[37] F. Longin,et al. Extreme Correlation of International Equity Markets , 2000 .
[38] Janet E. Heffernan,et al. Dependence Measures for Extreme Value Analyses , 1999 .
[39] Christian Genest,et al. A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .
[40] Richard L. Smith,et al. Markov chain models for threshold exceedances , 1997 .
[41] V. Koltchinskii. M-estimation, convexity and quantiles , 1997 .
[42] Bruno Rémillard,et al. On Kendall's Process , 1996 .
[43] P. Chaudhuri. On a geometric notion of quantiles for multivariate data , 1996 .
[44] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[45] A. Ledford,et al. Statistics for near independence in multivariate extreme values , 1996 .
[46] M. C. Jones,et al. A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .
[47] T. Louis,et al. Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.
[48] C. Genest,et al. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .
[49] E. T. Olsen,et al. Copulas and Markov processes , 1992 .
[50] Harry Joe,et al. Bivariate Threshold Methods for Extremes , 1992 .
[51] R. Theodorescu,et al. Note on the spatial quantile of a random vector , 1992 .
[52] J. Angus. The Asymptotic Theory of Extreme Order Statistics , 1990 .
[53] C. Genest,et al. A characterization of gumbel's family of extreme value distributions , 1989 .
[54] Jonathan A. Tawn,et al. Bivariate extreme value theory: Models and estimation , 1988 .
[55] 統計数理研究所. Annals of the institute of statistical mathematics , 1988, Public Choice.
[56] B. Schweizer,et al. On Nonparametric Measures of Dependence for Random Variables , 1981 .
[57] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .
[58] Masaaki Sibuya,et al. Bivariate extreme statistics, I , 1960 .
[59] Y. Hoga. Structural break tests for extremal dependence in β-mixing random vectors , 2017 .
[60] M. Haugh,et al. An Introduction to Copulas , 2016 .
[61] U. Schepsmeier,et al. Web supplement: Derivatives and Fisher information of bivariate copulas , 2012 .
[62] Matthieu,et al. de Travail du Centre d ’ Economie de la Sorbonne Extreme values of random or chaotic discretization steps , 2012 .
[63] Андрей Соколов,et al. Книги издательства Springer Science & Business Media , 2012 .
[64] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[65] H. A. David. Order Statistics , 2011, International Encyclopedia of Statistical Science.
[66] Jean-David Fermanian,et al. Weak convergence of empirical copula , 2004 .
[67] Kilani Ghoudi,et al. Empirical Processes Based on Pseudo-observations 11: The Multivariate Case , 2004 .
[68] Andrew J. Patton. On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation , 2002 .
[69] S. Mallat. A wavelet tour of signal processing , 1998 .
[70] H. Joe. Multivariate Models and Multivariate Dependence Concepts , 1997 .
[71] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[72] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .