Adjusting the conduction properties of La0.995Ca0.005NbO4 − δ by doping for proton conducting fuel cells electrode operation

[1]  J. M. Serra,et al.  Electrochemical Properties of PSFC–BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells , 2011 .

[2]  C. Fisher,et al.  Defects, Dopants, and Protons in LaNbO4 , 2010 .

[3]  H. Tuller,et al.  Defect Structure, Charge Transport Mechanisms, and Strain Effects in Sr4Fe6O12+δ Epitaxial Thin Films , 2010 .

[4]  Fei He,et al.  Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3−δ–BaCe0.8Sm0.2O3−δ composite cathode for solid oxide fuel cells with proton conducting electrolyte , 2009 .

[5]  E. Wachsman,et al.  Composite Cathodes for Proton Conducting Electrolytes , 2009 .

[6]  R. Haugsrud,et al.  Protons in Acceptor-Doped La3NbO7 and La3TaO7 , 2009 .

[7]  I. Kaus,et al.  High-Temperature Proton-Conducting Lanthanum Ortho-Niobate-Based Materials. Part II. Sintering Properties and Solubility of Alkaline Earth Oxides , 2008 .

[8]  K. Wiik,et al.  High‐Temperature Proton‐Conducting LaNbO4‐Based Materials: Powder Synthesis by Spray Pyrolysis , 2007 .

[9]  J. M. Serra,et al.  Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes : Toward an intermediate-temperature solid oxide fuel cell alternative , 2007 .

[10]  J. M. Serra,et al.  Thin BaCe0.8Gd0.2O3 − δ Protonic Electrolytes on Porous Ce0.8Gd0.2O1.9 – Ni Substrates , 2007 .

[11]  V. Kharton,et al.  Lanthanum substituted CeNbO4+δ scheelites : mixed conductivity and structure at elevated temperatures , 2006 .

[12]  T. Norby,et al.  High-temperature proton conductivity in acceptor-doped LaNbO4 , 2006 .

[13]  T. Norby,et al.  Proton conduction in rare-earth ortho-niobates and ortho-tantalates , 2006 .

[14]  Xiaoping Wu,et al.  The Meyer-Neldel compensation law for electrical conductivity in olivine , 2005 .

[15]  P. Viščor Comment on “Origin and consequences of the compensation (Meyer-Neldel) law” , 2002 .

[16]  B. Movaghar,et al.  Reply to ``Comment on `Origin and consequences of the compensation (Meyer-Neldel) law' '' , 2002 .

[17]  C. M. Wayman,et al.  Monoclinic‐to‐Tetragonal Phase Transformation in a Ceramic Rare‐Earth Orthoniobate, LaNbO4 , 1997 .

[18]  K. Knight,et al.  Perovskite solid electrolytes: Structure, transport properties and fuel cell applications , 1995 .

[19]  A. Kahn-Harari,et al.  Structural Description of La3NbO7 , 1995 .

[20]  Yelon,et al.  Origin and consequences of the compensation (Meyer-Neldel) law. , 1992, Physical review. B, Condensed matter.

[21]  A. Nowick,et al.  Protonic conduction in Fe-doped KTaO3 crystals , 1992 .

[22]  Yelon,et al.  Microscopic explanation of the compensation (Meyer-Neldel) rule. , 1990, Physical review letters.

[23]  B. Santo,et al.  Solid State , 2012 .

[24]  P. Bruce,et al.  Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4 , 1982 .

[25]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[26]  L. Eyring,et al.  On the structure of the intermediate phases in the praseodymium oxide system , 1979 .

[27]  S. Tsunekawa,et al.  Study on the room temperature phase of LaNbO4 crystals , 1977 .

[28]  F. H. Constable The mechanism of catalytic decomposition , 1925 .

[29]  D. Hohnke Ionic conductivity of Zr1−xIn2xO2−x , 1980 .