Genomic sequences encoding five divergent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase polypeptides (ACC1, ACC2, ACC3, ACC4, and ACC5) have been isolated from Arabidopsis thaliana by using heterologous cDNAs and PCR fragments amplified from genomic DNA with degenerate oligonucleotide primers. Each gene is located on a different chromosome in the Arabidopsis genome. The genes are differentially expressed during development and in response to environmental stimuli. Protein-synthesis inhibition derepresses the expression of all genes but most dramatically derepresses that of ACC2, suggesting that their expression may be under negative control. The sequence of ACC2 was determined, and its transcription initiation site was defined. Authenticity of the polypeptide encoded by the gene was confirmed by expression experiments in Escherichia coli. The predicted size of the protein is 55,623 Da, and it contains the 11 invariant amino acid residues conserved between aminotransferases and ACC synthases from various plant species. Comparative analysis of structural and expression characteristics of ACC synthase genes from Arabidopsis and other plant species suggests that the sequence divergence of the ACC synthase genes and possibly the distinct regulatory networks governing the expression of ACC synthase subfamilies arose early in plant evolution and before the divergence of monocots and dicots.