Perinuclear Localization of Internalized Outer Membrane Vesicles Carrying Active Cytolethal Distending Toxin from Aggregatibacter actinomycetemcomitans

ABSTRACT Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.

[1]  J. Korostoff,et al.  Cytolethal Distending Toxin Damages the Oral Epithelium of Gingival Explants , 2011, Journal of dental research.

[2]  T. Frisan,et al.  The Biology of the Cytolethal Distending Toxins , 2011, Toxins.

[3]  T. Takata,et al.  Topical application of Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces cell cycle arrest in the rat gingival epithelium in vivo. , 2011, Journal of periodontal research.

[4]  H. Takeuchi,et al.  Outer membrane vesicles function as offensive weapons in host-parasite interactions. , 2010, Microbes and infection.

[5]  M. Kuehn,et al.  Biological functions and biogenesis of secreted bacterial outer membrane vesicles. , 2010, Annual review of microbiology.

[6]  Katja Petzold,et al.  Biochemical and functional characterization of Helicobacter pylori vesicles , 2010, Molecular microbiology.

[7]  P. Papapanou,et al.  “Gum Bug, Leave My Heart Alone!”—Epidemiologic and Mechanistic Evidence Linking Periodontal Infections and Atherosclerosis , 2010, Journal of dental research.

[8]  M. Kuehn,et al.  Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles , 2010, Microbiology and Molecular Biology Reviews.

[9]  S. Wai,et al.  Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni , 2009, BMC Microbiology.

[10]  F. Yoshimura,et al.  Porphyromonas gingivalis Outer Membrane Vesicles Enter Human Epithelial Cells via an Endocytic Pathway and Are Sorted to Lysosomal Compartments , 2009, Infection and Immunity.

[11]  Angela C. Brown,et al.  Cytolethal Distending Toxin-induced Cell Cycle Arrest of Lymphocytes Is Dependent upon Recognition and Binding to Cholesterol* , 2009, Journal of Biological Chemistry.

[12]  Bruce A. Stanton,et al.  Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles , 2009, PLoS pathogens.

[13]  S. Tatulian,et al.  A novel mode of translocation for cytolethal distending toxin. , 2009, Biochimica et biophysica acta.

[14]  M. Kuehn,et al.  Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells , 2009, BMC Microbiology.

[15]  J. Oscarsson,et al.  Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells , 2008, BMC Microbiology.

[16]  A. Sjöstedt,et al.  IL-1beta secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. , 2008, International journal of medical microbiology : IJMM.

[17]  G. Grandi,et al.  Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli ΔtolR IHE3034 Mutant*S , 2008, Molecular & Cellular Proteomics.

[18]  S. Wai,et al.  Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form , 2008, BMC Microbiology.

[19]  T. Borén,et al.  Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. , 2006, Journal of medical microbiology.

[20]  É. Oswald,et al.  Biogenesis of the Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin Holotoxin , 2006, Infection and Immunity.

[21]  J. Hacker,et al.  Active Cytotoxic Necrotizing Factor 1 Associated with Outer Membrane Vesicles from Uropathogenic Escherichia coli , 2006, Infection and Immunity.

[22]  S. Wai,et al.  Release of the type I secreted α‐haemolysin via outer membrane vesicles from Escherichia coli , 2006 .

[23]  D. Bayles,et al.  The Contribution of Cytolethal Distending Toxin to Bacterial Pathogenesis , 2006, Critical reviews in microbiology.

[24]  S. Akifusa,et al.  Mechanism of internalization of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. , 2005, Microbiology.

[25]  G. Belibasakis,et al.  Cytokine responses of human gingival fibroblasts to Actinobacillus actinomycetemcomitans cytolethal distending toxin. , 2005, Cytokine.

[26]  G. Belibasakis,et al.  The Cytolethal Distending Toxin Induces Receptor Activator of NF-κB Ligand Expression in Human Gingival Fibroblasts and Periodontal Ligament Cells , 2005, Infection and Immunity.

[27]  M. Reedy,et al.  Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells , 2004, The EMBO journal.

[28]  G. Belibasakis,et al.  Cell cycle arrest of human gingival fibroblasts and periodontal ligament cells by Actinobacillus actinomycetemcomitans: involvement of the cytolethal distending toxin , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[29]  É. Oswald,et al.  Cytolethal distending toxin: a bacterial bullet targeted to nucleus. , 2004, Journal of biochemistry.

[30]  L. Dreyfus,et al.  Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit , 2004, Cellular microbiology.

[31]  J. Galán,et al.  Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  É. Oswald,et al.  An N-terminal Segment of the Active Component of the Bacterial Genotoxin Cytolethal Distending Toxin B (CDTB) Directs CDTB into the Nucleus* , 2003, Journal of Biological Chemistry.

[33]  C. Chen,et al.  Induction of T-cell apoptosis by Actinobacillus actinomycetemcomitans mutants with deletion of ltxA and cdtABC genes: possible activity of GroEL-like molecule. , 2003, Oral microbiology and immunology.

[34]  Agneta Richter-Dahlfors,et al.  Vesicle-Mediated Export and Assembly of Pore-Forming Oligomers of the Enterobacterial ClyA Cytotoxin , 2003, Cell.

[35]  C. Pickett,et al.  Interactions of Campylobacter jejuni Cytolethal Distending Toxin Subunits CdtA and CdtC with HeLa Cells , 2003, Infection and Immunity.

[36]  K. Okuda,et al.  Prevalence of Cytolethal Distending Toxin Production in Periodontopathogenic Bacteria , 2003, Journal of Clinical Microbiology.

[37]  D. Demuth,et al.  Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin , 2003, Cellular microbiology.

[38]  G. Belibasakis,et al.  Inhibited proliferation of human periodontal ligament cells and gingival fibroblasts by Actinobacillus actinomycetemcomitans: involvement of the cytolethal distending toxin. , 2002, European journal of oral sciences.

[39]  L. Svensson,et al.  Toxicity and immunogenicity of purified Haemophilus ducreyi cytolethal distending toxin in a rabbit model. , 2002, Microbial pathogenesis.

[40]  K. Song,et al.  Cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Occurrence and association with periodontal disease. , 2002, Journal of periodontal research.

[41]  J. Dirienzo,et al.  Detection of cytolethal distending toxin activity and cdt genes in Actinobacillus actinomycetemcomitans isolates from geographically diverse populations. , 2002, Oral microbiology and immunology.

[42]  R. Redfield,et al.  Natural Transformation and DNA Uptake Signal Sequences in Actinobacillus actinomycetemcomitans , 2002, Journal of bacteriology.

[43]  J. Galán,et al.  Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. , 2002, Trends in microbiology.

[44]  E. Hansen,et al.  Prevalence of cdtABC genes encoding cytolethal distending toxin among Haemophilus ducreyi and Actinobacillus actinomycetemcomitans strains. , 2001, Journal of medical microbiology.

[45]  J. Galán,et al.  CdtA, CdtB, and CdtC Form a Tripartite Complex That Is Required for Cytolethal Distending Toxin Activity , 2001, Infection and Immunity.

[46]  C. Elwell,et al.  Escherichia coli CdtB Mediates Cytolethal Distending Toxin Cell Cycle Arrest , 2001, Infection and Immunity.

[47]  J. Galán,et al.  A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. , 2000, Science.

[48]  L. Walsh,et al.  Molecular and cell biology of the gingiva. , 2000, Periodontology 2000.

[49]  C. Elwell,et al.  DNase I homologous residues in CdtB are critical for cytolethal distending toxin‐mediated cell cycle arrest , 2000, Molecular microbiology.

[50]  M. Kuehn,et al.  Enterotoxigenic Escherichia coli Secretes Active Heat-labile Enterotoxin via Outer Membrane Vesicles* , 2000, The Journal of Biological Chemistry.

[51]  G. Sandström,et al.  Anaerobic neutrophil-dependent killing of Actinobacillus actinomycetemcomitans in relation to the bacterial leukotoxicity. , 2000, European journal of oral sciences.

[52]  A. V. van Winkelhoff,et al.  Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in nonoral infections. , 1999, Periodontology 2000.

[53]  B. Shenker,et al.  Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. , 1999, Journal of immunology.

[54]  V. Uitto,et al.  Subcellular Localization and Cytotoxic Activity of the GroEL-Like Protein Isolated from Actinobacillus actinomycetemcomitans , 1998, Infection and Immunity.

[55]  É. Oswald,et al.  The Cell Cycle-Specific Growth-Inhibitory Factor Produced by Actinobacillus actinomycetemcomitansIs a Cytolethal Distending Toxin , 1998, Infection and Immunity.

[56]  P. Orlandi,et al.  Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains , 1998, The Journal of cell biology.

[57]  Kai Simons,et al.  Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components , 1998, The Journal of cell biology.

[58]  Jian Fei Wang,et al.  RTX Toxins Recognize a β2 Integrin on the Surface of Human Target Cells* , 1997, The Journal of Biological Chemistry.

[59]  M. Saarela,et al.  Frequency and stability of mono- or poly-infection by Actinobacillus actinomycetemcomitans serotypes a, b, c, d or e. , 1992, Oral microbiology and immunology.

[60]  S. Socransky,et al.  The Bacterial Etiology of Destructive Periodontal Disease: Current Concepts. , 1992, Journal of periodontology.

[61]  J. Lippincott-Schwartz,et al.  Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin a suggests an ER recycling pathway , 1990, Cell.

[62]  J. Rosenbloom,et al.  Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. , 1989, The Journal of biological chemistry.

[63]  Y. Ikehara,et al.  Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. , 1988, The Journal of biological chemistry.

[64]  N. Taichman,et al.  Killing of human myelomonocytic leukemia and lymphocytic cell lines by Actinobacillus actinomycetemcomitans leukotoxin , 1988, Infection and immunity.

[65]  D. Hoekstra,et al.  Fluorescence method for measuring the kinetics of fusion between biological membranes. , 1984, Biochemistry.

[66]  R. Genco,et al.  Microbial Pathogenicity Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in Human Periodontal Disease: Virulence Factors in Colonization, Survival, and Tissue Destruction , 1984, Journal of dental research.

[67]  U. Henning,et al.  Radioimmunological screening method for specific membrane proteins. , 1979, Analytical biochemistry.

[68]  C. E. Stebbins,et al.  Assembly and function of a bacterial genotoxin , 2004, Nature.

[69]  D. Demuth,et al.  Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. , 2002, Microbial pathogenesis.

[70]  V. Uitto,et al.  Localization of heat shock proteins in clinical Actinobacillus actinomycetemcomitans strains and their effects on epithelial cell proliferation. , 2000, FEMS microbiology letters.