Superfast CUR Approximation of Low Rank Matrices ∗

We study superfast algorithms that computes low rank approximation of a matrix (hereafter referred to as LRA) that use much fewer memory cells and arithmetic operations than the input matrix has entries. We first specify a family of 2mn matrices of size m*n such that for almost 50% of them any superfast LRA algorithm fails to improve the poor trivial approximation by the matrix filled with zeros, but then we prove that the class of all such hard inputs is narrow - the cross-approximation (hereafter {C-A}) superfast iterations as well as some more primitive superfast algorithms compute reasonably accurate LRAs in their transparent CUR form (i) to any matrix allowing close LRA except for small norm perturbations of matrices of an algebraic variety of a smaller dimension, (ii) to the average matrix allowing close LRA, (iii) to the average sparse matrix allowing close LRA and (iv) with a high probability to any matrix allowing close LRA if it is pre-processed fast with a random Gaussian, SRHT or SRFT multiplier. Moreover empirically the output LRAs remain accurate when we perform the computations superfast by replacing such a multiplier with one of our sparse and structured multipliers. Our techniques, auxiliary results and extensions may be of some independent interest. We analyze C-A and other superfast algorithms twice -- based on two well-known sufficient criteria for obtaining accurate LRAs. We provide a distinct proof in the case of superfast variant of randomized algorithms of [DMM08], improve a decade-old estimate for the norm of the inverse of a Gaussian matrix, prove such an estimate also in the case of a sparse Gaussian matrix, present some novel advanced pre-processing techniques for fast and superfast computation of LRA, and extend our results to dramatic acceleration of the Fast Multipole Method (FMM) and the Conjugate Gradient algorithms.

[1]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[2]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Victor Y. Pan,et al.  New Studies of Randomized Augmentation and Additive Preprocessing , 2014, 1412.5864.

[5]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[6]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[7]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[8]  Per Christian Hansen,et al.  Some Applications of the Rank Revealing QR Factorization , 1992, SIAM J. Sci. Comput..

[9]  Victor Y. Pan,et al.  N A ] 5 J un 2 01 6 Fast Low-rank Approximation of a Matrix : Novel Insights , Novel Multipliers , and Extensions ∗ , 2016 .

[10]  Jianlin Xia,et al.  Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..

[11]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[12]  Christos Boutsidis,et al.  Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..

[13]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[14]  Victor Y. Pan,et al.  Transformations of Matrix Structures Work Again , 2013, 1303.0353.

[15]  I. V. Oseledets,et al.  Fast multidimensional convolution in low-rank formats via cross approximation , 2014 .

[16]  Jianlin Xia,et al.  Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling , 2014, SIAM J. Matrix Anal. Appl..

[17]  D. E. Knuth Semi-optimal bases for linear dependencies , 1985 .

[18]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[19]  A. Yu. Mikhalev,et al.  Iterative representing set selection for nested cross approximation , 2013, Numer. Linear Algebra Appl..

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Alan C. Elliott,et al.  Statistical Analysis Quick Reference Guidebook: With SPSS Examples , 2006 .

[22]  Venkatesan Guruswami,et al.  Optimal column-based low-rank matrix reconstruction , 2011, SODA.

[23]  Jianlin Xia,et al.  On the Complexity of Some Hierarchical Structured Matrix Algorithms , 2012, SIAM J. Matrix Anal. Appl..

[24]  Kim Batselier,et al.  Tensor Computation: A New Framework for High-Dimensional Problems in EDA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[25]  T. Hwang,et al.  Rank revealing LU factorizations , 1992 .

[26]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[27]  T. Chan Rank revealing QR factorizations , 1987 .

[28]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[29]  Mario Bebendorf,et al.  Wideband nested cross approximation for Helmholtz problems , 2015, Numerische Mathematik.

[30]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[31]  Victor Pan,et al.  Numerically Safe Gaussian Elimination with No Pivoting , 2015, 1501.05385.

[32]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[33]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[34]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[35]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[36]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[37]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[38]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[39]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[40]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[41]  Eugene E. Tyrtyshnikov,et al.  Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm , 2011 .

[42]  Victor Y. Pan,et al.  Random multipliers numerically stabilize Gaussian and block Gaussian elimination: Proofs and an extension to low-rank approximation ☆ , 2014, 1406.5802.

[43]  Jianlin Xia,et al.  A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..

[44]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[45]  Andrew V. Knyazev,et al.  Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1 , 2015, ICCS.

[46]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[47]  Joel A. Tropp,et al.  Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..

[48]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[49]  Gene H. Golub,et al.  Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.

[50]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[51]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[52]  Christos Boutsidis,et al.  Optimal CUR matrix decompositions , 2014, SIAM J. Comput..

[53]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[54]  Zhihua Zhang,et al.  Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling , 2013, J. Mach. Learn. Res..

[55]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[56]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[57]  David P. Woodruff,et al.  How to Fake Multiply by a Gaussian Matrix , 2016, ICML.

[58]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[59]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[60]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[61]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[62]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[63]  Boris N. Khoromskij,et al.  Efficient Computation of Highly Oscillatory Integrals by Using QTT Tensor Approximation , 2014, Comput. Methods Appl. Math..

[64]  David P. Woodruff,et al.  Low rank approximation with entrywise l1-norm error , 2017, STOC.

[65]  Per Christian Hansen,et al.  Computing Truncated Singular Value Decomposition Least Squares Solutions by Rank Revealing QR-Factorizations , 1990, SIAM J. Sci. Comput..

[66]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[67]  Ivan V. Oseledets,et al.  Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..

[68]  T. Chan On the existence and computation of $LU$-factorizations with small pivots , 1984 .

[69]  Andrew V. Knyazev,et al.  Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning , 2007, SIAM J. Matrix Anal. Appl..

[70]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[71]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[72]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[73]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[74]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[75]  N. Kishore Kumar,et al.  Literature survey on low rank approximation of matrices , 2016, ArXiv.

[76]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[77]  Mario Bebendorf,et al.  Adaptive Cross Approximation of Multivariate Functions , 2011 .