Strong Gravitational Lensing by Wave Dark Matter Halos

Wave dark matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the universe. In this paper we explore the extent to which, and under what conditions, dark matter halos in this model are able to reproduce strong-lensing systems. First, we explore analytically the lensing properties of the model, finding that a pure WaveDM density profile, the soliton profile, produces a weaker lensing effect than similar cored profiles. Then, we analyze models with a soliton embedded within a Navarro, Frenk, and White (NFW) profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of ma = 10−22 eV, for which we see that there is a bimodality in the contribution of the external NFW part of the profile, and some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses 10−23 to 10−22 eV, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data, but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of 10−21 eV, which would be consistent with Lyα constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound ma > 10−24 eV and that the NFW envelope around the soliton must be present to satisfy the observational requirements.

[1]  R. Nichol,et al.  A precise extragalactic test of General Relativity , 2018, Science.

[2]  M. Safonova Gravitational Lensing and Microlensing in Clusters: Clusters as Dark Matter Telescopes , 2018, Bulletin de la Société royale des sciences de Liège.

[3]  Mpa,et al.  Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics , 2017, 1711.01123.

[4]  M. Radovich,et al.  The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey , 2017, 1709.03542.

[5]  Tzihong Chiueh,et al.  Halo abundance and assembly history with extreme-axion wave dark matter at $z\ge 4$ , 2017, 1706.03723.

[6]  Jae-weon Lee Brief History of Ultra-light Scalar Dark Matter Models , 2017, 1704.05057.

[7]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[8]  L. Hernquist,et al.  Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. , 2017, Monthly notices of the Royal Astronomical Society.

[9]  T. Chiueh,et al.  Cosmological Perturbations of Extreme Axion in the Radiation Era , 2017, 1705.01439.

[10]  A. González-Morales,et al.  Cosmological signatures of ultralight dark matter with an axionlike potential , 2017, 1703.10180.

[11]  Eric Armengaud,et al.  Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.

[12]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[13]  T. Chiueh,et al.  Evolution of linear wave dark matter perturbations in the radiation-dominated era , 2017, 1702.07065.

[14]  L. A. Urena-L'opez,et al.  Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model , 2017, 1702.05103.

[15]  Lizbeth M. Fern'andez-Hern'andez,et al.  Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter , 2017, 1701.00912.

[16]  Xiaolei Li,et al.  TEST OF PARAMETRIZED POST-NEWTONIAN GRAVITY WITH GALAXY-SCALE STRONG LENSING SYSTEMS , 2017, 1701.00357.

[17]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[18]  J. Peñarrubia,et al.  Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies , 2016, 1609.05856.

[19]  G. Ven,et al.  A spiral galaxy's mass distribution uncovered through lensing and dynamics , 2016, 1609.05477.

[20]  Jens C. Niemeyer,et al.  Cosmological particle-in-cell simulations with ultralight axion dark matter , 2016, 1608.00802.

[21]  Tzihong Chiueh,et al.  Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter , 2016, 1606.09030.

[22]  J. Niemeyer,et al.  Simulations of solitonic core mergers in ultralight axion dark matter cosmologies , 2016, 1606.05151.

[23]  M. Biesiada,et al.  Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems , 2016, 1604.05625.

[24]  J. Lesgourgues,et al.  A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.

[25]  Kris Sigurdson,et al.  ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe , 2015, 1512.05344.

[26]  Manoj Kaplinghat,et al.  Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. , 2015, Physical review letters.

[27]  V. Avila-Reese,et al.  THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES , 2015, 1512.03538.

[28]  A. González-Morales,et al.  Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter , 2015, 1511.08195.

[29]  R. Gavazzi,et al.  COSMOLOGY WITH STRONG-LENSING SYSTEMS , 2015, 1509.07649.

[30]  CEA-Saclay,et al.  Detection of universality of dark matter profile from Subaru weak lensing measurements of 50 massive clusters , 2015, 1504.01413.

[31]  D. Marsh,et al.  Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.

[32]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[33]  Daniel Grin,et al.  A search for ultralight axions using precision cosmological data , 2014, 1410.2896.

[34]  Tzihong Chiueh,et al.  Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.

[35]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[36]  C. A. Oxborrow,et al.  Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data , 2014, 1406.5093.

[37]  S. Profumo,et al.  Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter , 2014, 1404.1054.

[38]  G. Meylan,et al.  COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.

[39]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE , 2013, 1307.4764.

[40]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE , 2013, 1307.4759.

[41]  T. Matos,et al.  Strong lensing with finite temperature scalar field dark matter , 2013, 1302.5944.

[42]  A. Su'arez,et al.  A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model , 2013, 1302.0903.

[43]  O. Valenzuela,et al.  Hints on halo evolution in scalar field dark matter models with galaxy observations , 2012, 1211.6431.

[44]  Infn,et al.  TESTING THE DARK ENERGY WITH GRAVITATIONAL LENSING STATISTICS , 2012, 1206.4948.

[45]  B. Moore,et al.  Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.

[46]  Shuo Cao,et al.  Constraints on cosmological models from lens redshift data , 2011, 1105.6182.

[47]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT , 2011, 1104.2608.

[48]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[49]  Robert C. Kennicutt,et al.  DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES , 2010, 1011.0899.

[50]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[51]  M. Biesiada,et al.  Cosmic equation of state from strong gravitational lensing systems , 2010, 1105.0946.

[52]  S. White,et al.  What is the (dark) matter with dwarf galaxies , 2010, 1003.0671.

[53]  W. J. Blok,et al.  The Core-Cusp Problem , 2009, 0910.3538.

[54]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[55]  V. Cardone,et al.  The global mass-to-light ratio of SLACS lenses , 2009, 0905.4246.

[56]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[57]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[58]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[59]  M. Lombardi,et al.  Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies , 2007, 0711.0882.

[60]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[61]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[62]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[63]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[64]  E. Ofek,et al.  Spectroscopic Redshifts for Seven Lens Galaxies , 2005, astro-ph/0510465.

[65]  L. Koopmans Gravitational Imaging of CDM Substructure , 2005, astro-ph/0501324.

[66]  F. S. Guzmán,et al.  Evolution of the Schrödinger--Newton system for a self--gravitating scalar field , 2004, gr-qc/0404014.

[67]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[68]  Jonathan L. Mitchell,et al.  Improved Cosmological Constraints from Gravitational Lens Statistics , 2004, astro-ph/0401138.

[69]  V. Cardone The lensing properties of the Sersic model , 2003, astro-ph/0311559.

[70]  E. Ofek,et al.  The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution , 2003, astro-ph/0305201.

[71]  H. Ferguson,et al.  Gravitational Lensing by Burkert Halos , 2003, astro-ph/0304317.

[72]  M. Sereno Probing the dark energy with strong lensing by clusters of galaxies , 2002, astro-ph/0209210.

[73]  C. Kochanek,et al.  Cusped Mass Models of Gravitational Lenses , 2001, astro-ph/0103009.

[74]  T. Futamase,et al.  Possible Measurement of Quintessence and Density Parameter Using Strong Gravitational Lensing Events , 2000, gr-qc/0011083.

[75]  D. Spergel,et al.  Gravitational Lens Statistics for Generalized NFW Profiles: Parameter Degeneracy and Implications for Self-Interacting Cold Dark Matter , 2000, astro-ph/0007354.

[76]  T. Matos,et al.  Further analysis of a cosmological model with quintessence and scalar dark matter , 2000, astro-ph/0006024.

[77]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[78]  B. McLeod,et al.  The Importance of Einstein Rings , 2000, astro-ph/0006116.

[79]  J. Goodman Repulsive dark matter , 2000, astro-ph/0003018.

[80]  F. S. Guzmán,et al.  Scalar field as dark matter in the universe , 1999, astro-ph/9908152.

[81]  Candace Oaxaca WrightTereasa G. Brainerd,et al.  Gravitational Lensing by NFW Halos , 1999, astro-ph/9908213.

[82]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[83]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[84]  M. Garrett,et al.  MG2016+112: A Double Gravitational Lens Model , 1996 .

[85]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995, astro-ph/9504041.

[86]  C. Kochanek The implications of lenses for galaxy structure , 1991 .

[87]  Physical Review Letters 63 , 1989 .

[88]  S. Bonazzola,et al.  Systems of self-gravitating particles in general relativity , 1969 .