Strong Gravitational Lensing by Wave Dark Matter Halos
暂无分享,去创建一个
M. Hendry | Antonio Herrera-Mart'in | A. González-Morales | L. A. Urena-L'opez | Antonio Herrera-Martín
[1] R. Nichol,et al. A precise extragalactic test of General Relativity , 2018, Science.
[2] M. Safonova. Gravitational Lensing and Microlensing in Clusters: Clusters as Dark Matter Telescopes , 2018, Bulletin de la Société royale des sciences de Liège.
[3] Mpa,et al. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics , 2017, 1711.01123.
[4] M. Radovich,et al. The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey , 2017, 1709.03542.
[5] Tzihong Chiueh,et al. Halo abundance and assembly history with extreme-axion wave dark matter at $z\ge 4$ , 2017, 1706.03723.
[6] Jae-weon Lee. Brief History of Ultra-light Scalar Dark Matter Models , 2017, 1704.05057.
[7] Michael Boylan-Kolchin,et al. Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.
[8] L. Hernquist,et al. Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. , 2017, Monthly notices of the Royal Astronomical Society.
[9] T. Chiueh,et al. Cosmological Perturbations of Extreme Axion in the Radiation Era , 2017, 1705.01439.
[10] A. González-Morales,et al. Cosmological signatures of ultralight dark matter with an axionlike potential , 2017, 1703.10180.
[11] Eric Armengaud,et al. Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.
[12] Matteo Viel,et al. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.
[13] T. Chiueh,et al. Evolution of linear wave dark matter perturbations in the radiation-dominated era , 2017, 1702.07065.
[14] L. A. Urena-L'opez,et al. Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model , 2017, 1702.05103.
[15] Lizbeth M. Fern'andez-Hern'andez,et al. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter , 2017, 1701.00912.
[16] Xiaolei Li,et al. TEST OF PARAMETRIZED POST-NEWTONIAN GRAVITY WITH GALAXY-SCALE STRONG LENSING SYSTEMS , 2017, 1701.00357.
[17] S. Tremaine,et al. Ultralight scalars as cosmological dark matter , 2016, 1610.08297.
[18] J. Peñarrubia,et al. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies , 2016, 1609.05856.
[19] G. Ven,et al. A spiral galaxy's mass distribution uncovered through lensing and dynamics , 2016, 1609.05477.
[20] Jens C. Niemeyer,et al. Cosmological particle-in-cell simulations with ultralight axion dark matter , 2016, 1608.00802.
[21] Tzihong Chiueh,et al. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter , 2016, 1606.09030.
[22] J. Niemeyer,et al. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies , 2016, 1606.05151.
[23] M. Biesiada,et al. Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems , 2016, 1604.05625.
[24] J. Lesgourgues,et al. A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.
[25] Kris Sigurdson,et al. ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe , 2015, 1512.05344.
[26] Manoj Kaplinghat,et al. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. , 2015, Physical review letters.
[27] V. Avila-Reese,et al. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES , 2015, 1512.03538.
[28] A. González-Morales,et al. Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter , 2015, 1511.08195.
[29] R. Gavazzi,et al. COSMOLOGY WITH STRONG-LENSING SYSTEMS , 2015, 1509.07649.
[30] CEA-Saclay,et al. Detection of universality of dark matter profile from Subaru weak lensing measurements of 50 massive clusters , 2015, 1504.01413.
[31] D. Marsh,et al. Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.
[32] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[33] Daniel Grin,et al. A search for ultralight axions using precision cosmological data , 2014, 1410.2896.
[34] Tzihong Chiueh,et al. Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.
[35] T. Broadhurst,et al. Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.
[36] C. A. Oxborrow,et al. Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data , 2014, 1406.5093.
[37] S. Profumo,et al. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter , 2014, 1404.1054.
[38] G. Meylan,et al. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.
[39] Cosmology,et al. THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE , 2013, 1307.4764.
[40] Cosmology,et al. THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE , 2013, 1307.4759.
[41] T. Matos,et al. Strong lensing with finite temperature scalar field dark matter , 2013, 1302.5944.
[42] A. Su'arez,et al. A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model , 2013, 1302.0903.
[43] O. Valenzuela,et al. Hints on halo evolution in scalar field dark matter models with galaxy observations , 2012, 1211.6431.
[44] Infn,et al. TESTING THE DARK ENERGY WITH GRAVITATIONAL LENSING STATISTICS , 2012, 1206.4948.
[45] B. Moore,et al. Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.
[46] Shuo Cao,et al. Constraints on cosmological models from lens redshift data , 2011, 1105.6182.
[47] A. Bolton,et al. THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT , 2011, 1104.2608.
[48] M. Boylan-Kolchin,et al. Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.
[49] Robert C. Kennicutt,et al. DARK AND LUMINOUS MATTER IN THINGS DWARF GALAXIES , 2010, 1011.0899.
[50] A. Bolton,et al. THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.
[51] M. Biesiada,et al. Cosmic equation of state from strong gravitational lensing systems , 2010, 1105.0946.
[52] S. White,et al. What is the (dark) matter with dwarf galaxies , 2010, 1003.0671.
[53] W. J. Blok,et al. The Core-Cusp Problem , 2009, 0910.3538.
[54] A. Bolton,et al. THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.
[55] V. Cardone,et al. The global mass-to-light ratio of SLACS lenses , 2009, 0905.4246.
[56] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[57] A. Bolton,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .
[58] A. Bolton,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .
[59] M. Lombardi,et al. Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies , 2007, 0711.0882.
[60] C. Boehmer,et al. Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.
[61] J. Rhodes,et al. The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.
[62] A. Bolton,et al. The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.
[63] UCLA,et al. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.
[64] E. Ofek,et al. Spectroscopic Redshifts for Seven Lens Galaxies , 2005, astro-ph/0510465.
[65] L. Koopmans. Gravitational Imaging of CDM Substructure , 2005, astro-ph/0501324.
[66] F. S. Guzmán,et al. Evolution of the Schrödinger--Newton system for a self--gravitating scalar field , 2004, gr-qc/0404014.
[67] T. Treu,et al. Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.
[68] Jonathan L. Mitchell,et al. Improved Cosmological Constraints from Gravitational Lens Statistics , 2004, astro-ph/0401138.
[69] V. Cardone. The lensing properties of the Sersic model , 2003, astro-ph/0311559.
[70] E. Ofek,et al. The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution , 2003, astro-ph/0305201.
[71] H. Ferguson,et al. Gravitational Lensing by Burkert Halos , 2003, astro-ph/0304317.
[72] M. Sereno. Probing the dark energy with strong lensing by clusters of galaxies , 2002, astro-ph/0209210.
[73] C. Kochanek,et al. Cusped Mass Models of Gravitational Lenses , 2001, astro-ph/0103009.
[74] T. Futamase,et al. Possible Measurement of Quintessence and Density Parameter Using Strong Gravitational Lensing Events , 2000, gr-qc/0011083.
[75] D. Spergel,et al. Gravitational Lens Statistics for Generalized NFW Profiles: Parameter Degeneracy and Implications for Self-Interacting Cold Dark Matter , 2000, astro-ph/0007354.
[76] T. Matos,et al. Further analysis of a cosmological model with quintessence and scalar dark matter , 2000, astro-ph/0006024.
[77] R. Barkana,et al. Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.
[78] B. McLeod,et al. The Importance of Einstein Rings , 2000, astro-ph/0006116.
[79] J. Goodman. Repulsive dark matter , 2000, astro-ph/0003018.
[80] F. S. Guzmán,et al. Scalar field as dark matter in the universe , 1999, astro-ph/9908152.
[81] Candace Oaxaca WrightTereasa G. Brainerd,et al. Gravitational Lensing by NFW Halos , 1999, astro-ph/9908213.
[82] F. Prada,et al. Where are the missing galactic satellites? , 1999, astro-ph/9901240.
[83] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[84] M. Garrett,et al. MG2016+112: A Double Gravitational Lens Model , 1996 .
[85] A. Burkert. The Structure of Dark Matter Halos in Dwarf Galaxies , 1995, astro-ph/9504041.
[86] C. Kochanek. The implications of lenses for galaxy structure , 1991 .
[87] Physical Review Letters 63 , 1989 .
[88] S. Bonazzola,et al. Systems of self-gravitating particles in general relativity , 1969 .