Elastic scattering of electrons and positrons by atoms. Schrödinger and Dirac partial wave analysis

Abstract Two FORTRAN 77 codes are described which provide a complete description of elastic scattering of electrons and positrons by atoms using the static field approximation with non-relativistic (Schrodinger) and relativistic (Dirac) partial wave analysis. The delivered information includes phase shifts, differential cross-sections, scattering amplitudes and percentage points of the single scattering angular distribution. The scattering field may be internally generated by the codes (which incorporate an accurate analytical approximation to the Dirac-Hartree-Fock-Slater field of free atoms) or read from the input file. Solid state effects for scattering in solids are described by means of a simple muffin-tin model. For electron scattering, exchange corrections are also taken into account. Phase shifts are obtained by using the RADWEQ subroutine package [Comput. Phys. Commun. 62 (1991) 65] to solve the radial equations. The relativistic code provides reliable cross-section data for kinetic energies between ≈ 1 keV and ≈ 1 MeV.

[1]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[2]  F. J. Heer,et al.  Absolute differential cross sections for elastic scattering of electrons by krypton and xenon , 1976 .

[3]  F. Salvat,et al.  Monte Carlo simulation of kilovolt electron transport in solids , 1990 .

[4]  F. Salvat,et al.  Accurate numerical solution of the Schrodinger and Dirac wave equations for central fields , 1991 .

[5]  J. Simons,et al.  The Hartree-Fock Method for Atoms , 1979 .

[6]  John B. Pendry,et al.  Low-Energy Electron Diffraction , 1990 .

[7]  R. N. Wilson,et al.  PHASE SHIFT CALCULATION OF HIGH ENERGY ELECTRON SCATTERING. Technical Report No. 6 , 1954 .

[8]  D. Cromer,et al.  Relativistic self-consistent field program for atoms and ions , 1984 .

[9]  F. Salvat,et al.  Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1-92). , 1987, Physical review. A, General physics.

[10]  W. Bühring An approximate phase shift formula applied to elastic scattering of electrons by mercury atoms , 1984 .

[11]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[12]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[13]  A. C. Yates A program for calculating relativistic elastic electron-atom collision data , 1984 .

[14]  Merle E. Riley,et al.  Theoretical electron-atom elastic scattering cross sections , 1975 .

[15]  H. Ebel,et al.  Effects of photoelectron elastic scattering on angular distribution of photoemission from solids , 1986 .

[16]  D. W. Walker Relativistic effects in low energy electron scattering from atoms , 1971 .

[17]  Shin-R Lin Elastic Electron Scattering by Screened Nuclei , 1964 .

[18]  H. L. Cox,et al.  Elastic Electron Scattering Amplitudes for Neutral Atoms Calculated Using the Partial Wave Method at 10, 40, 70, and 100 kV for Z = 1 to Z = 54 , 1967 .

[19]  W. J. Byatt ANALYTICAL REPRESENTATION OF HARTREE POTENTIALS AND ELECTRON SCATTERING , 1956 .

[20]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[21]  F. Salvat,et al.  Elastic scattering of electrons by atoms: a semiphenomenological approach , 1987 .

[22]  Ian E. McCarthy,et al.  Semiphenomenological optical model for electron scattering on atoms , 1973 .

[23]  L. Reimer,et al.  Calculation and tabulation of mott cross‐sections for large‐angle electron scattering , 1984 .

[24]  Wolfgang Burhing Computational improvements in phase shift calculations of elastic electron scattering , 1965 .

[25]  R. Bonham,et al.  Analytical Expressions for Potentials of Neutral Thomas—Fermi—Dirac Atoms and for the Corresponding Atomic Scattering Factors for X Rays and Electrons , 1963 .

[26]  R. Shimizu,et al.  Backscattering correction for quantitative Auger analysis: I. Monte Carlo calculations of backscattering factors for standard materials , 1981 .