Wait-Free Solvability of Equality Negation Tasks
暂无分享,去创建一个
Sergio Rajsbaum | Marijana Lazic | Éric Goubault | Jérémy Ledent | S. Rajsbaum | M. Lazic | É. Goubault | J. Ledent
[1] Maurice Herlihy,et al. An Equivariance Theorem with Applications to Renaming , 2012, LATIN.
[2] Prasad Jayanti. On the robustness of Herlihy's hierarchy , 1993, PODC '93.
[3] Vassos Hadzilacos,et al. All of Us Are Smarter than Any of Us: Nondeterministic Wait-Free Hierarchies Are Not Robust , 2000, SIAM J. Comput..
[4] Nancy A. Lynch,et al. The BG distributed simulation algorithm , 2001, Distributed Computing.
[5] Michel Raynal,et al. Generalized Symmetry Breaking Tasks and Nondeterminism in Concurrent Objects , 2016, SIAM J. Comput..
[6] Sergio Rajsbaum,et al. A dynamic epistemic logic analysis of the equality negation task , 2019, DaLí.
[7] Hagit Attiya,et al. The Combinatorial Structure of Wait-Free Solvable Tasks , 2002, SIAM J. Comput..
[8] Sergio Rajsbaum,et al. New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.
[9] Maurice Herlihy,et al. Wait-free synchronization , 1991, TOPL.
[10] Amos Israeli,et al. On processor coordination using asynchronous hardware , 1987, PODC '87.
[11] A W Tucker,et al. On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[12] K. Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation* , 1967 .
[13] Michael Henle,et al. A combinatorial introduction to topology , 1978 .