Carmeltazite, ZrAl2Ti4O11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel

The new mineral species carmeltazite, ideally ZrAl2Ti4O11, was discovered in pockets of trapped melt interstitial to, or included in, corundum xenocrysts from the Cretaceous Mt Carmel volcanics of northern Israel, associated with corundum, tistarite, anorthite, osbornite, an unnamed REE (Rare Earth Element) phase, in a Ca-Mg-Al-Si-O glass. In reflected light, carmeltazite is weakly to moderately bireflectant and weakly pleochroic from dark brown to dark green. Internal reflections are absent. Under crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance values for the four COM wavelengths (Rmin, Rmax (%) (λ in nm)) are: 21.8, 22.9 (471.1); 21.0, 21.6 (548.3), 19.9, 20.7 (586.6); and 18.5, 19.8 (652.3). Electron microprobe analysis (average of eight spot analyses) gave, on the basis of 11 oxygen atoms per formula unit and assuming all Ti and Sc as trivalent, the chemical formula (Ti3+3.60Al1.89Zr1.04Mg0.24Si0.13Sc0.06Ca0.05Y0.02Hf0.01)Σ=7.04O11. The simplified formula is ZrAl2Ti4O11, which requires ZrO2 24.03, Al2O3 19.88, and Ti2O3 56.09, totaling 100.00 wt %. The main diffraction lines, corresponding to multiple hkl indices, are (d in Å (relative visual intensity)): 5.04 (65), 4.09 (60), 2.961 (100), 2.885 (40), and 2.047 (60). The crystal structure study revealed carmeltazite to be orthorhombic, space group Pnma, with unit-cell parameters a = 14.0951 (9), b = 5.8123 (4), c = 10.0848 (7) Å, V = 826.2 (1) Å3, and Z = 4. The crystal structure was refined to a final R1 = 0.0216 for 1165 observed reflections with Fo > 4σ(Fo). Carmeltazite exhibits a structural arrangement similar to that observed in a defective spinel structure. The name carmeltazite derives from Mt Carmel (“CARMEL”) and from the dominant metals present in the mineral, i.e., Titanium, Aluminum and Zirconium (“TAZ”). The mineral and its name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (2018-103).

[1]  W. Griffin,et al.  A terrestrial magmatic hibonite-grossite-vanadium assemblage: Desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel , 2019, American Mineralogist.

[2]  W. Griffin,et al.  Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle , 2018, Mineralogy and Petrology.

[3]  W. Griffin,et al.  Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: the view from Mount Carmel , 2017 .

[4]  W. Griffin,et al.  First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel , 2016 .

[5]  G. Rossman,et al.  Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite , 2014 .

[6]  G. Rossman,et al.  Kangite, (Sc,Ti,Al,Zr,Mg,Ca,⃞)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction , 2013 .

[7]  G. Rossman,et al.  Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD , 2012 .

[8]  I. Imaz,et al.  Structural filiations in the new complex titanates SrLiMTi4O11 (M=Cr, Fe). , 2007, Acta crystallographica. Section B, Structural science.

[9]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[10]  W. H. Baur,et al.  Variations on the theme of closest packing: The structural chemistry of barium titanate compounds , 1985 .

[11]  W. Griffin,et al.  A terrestrial magmatic hibonite-grossite-vanadium assemblage : desilication 1 and extreme reduction in a volcanic plumbing system , 2018 .

[12]  Rossman,et al.  O 3 , a new ultrarefractory scandia mineral 2 from the Allende meteorite : Synchrotron micro-Laue diffraction and 3 electron backscatter diffraction 4 , 2013 .

[13]  G. Rossman,et al.  O 3 , a new ultra-refractory titania mineral from the Allende meteorite : Synchrotron micro-diffraction and EBSD , 2012 .

[14]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[15]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[16]  Robin Taylor,et al.  International Tables for Crystallography, Volume C , 1992 .

[17]  E. Tillmanns,et al.  Die Kristallstruktur eines Bariumtitanlithiumoxids, Ba2Ti9,25Li3O22 , 1976 .