Fundamental study of mechanical energy harvesting using piezoelectric nanostructures

This paper numerically estimates the potential, the output power and the energy conversion efficiency of piezoelectric nanostructures, including rectangular nanowires (NWs), hexagonal NWs, and two-dimensional vertical thin films (the nanofins). Static analysis studies the maximum piezoelectric potential that can be produced by a BaTiO3 NW, a ZnO NW, and a ZnO nanofin when they are subjected to a constant external force. Dynamic analysis is performed to study the power generation ability via the vibration of these nanostructures agitated by ambient vibration energy. ZnO NW and nanofin are selected as two representative nanogenerator elements. Their dynamic responses are modeled using a single-degree of freedom system with a series of damping ratios. Combining the transfer functions of mechanical vibration and piezoelectric charge generation, we define the output power and efficiencies as functions of the vibration frequency and the sizes. The optimal size for constructing a high efficiency and high-power n...

[1]  Zhong Lin Wang,et al.  Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. , 2009, Nano letters.

[2]  Kyungsuk Yum,et al.  Voltage generation from individual BaTiO(3) nanowires under periodic tensile mechanical load. , 2007, Nano letters.

[3]  S. Choe,et al.  Analysis of Piezoelectric Materials for Energy Harvesting Devices under High-g Vibrations , 2007 .

[4]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[5]  Jian Shi,et al.  Zn cluster drifting effect for the formation of ZnO 3D nanoarchitecture. , 2009, ACS nano.

[6]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[7]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[8]  Z. Wang,et al.  Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator , 2009, Nanotechnology.

[9]  Christian Falconi,et al.  Studying piezoelectric nanowires and nanowalls for energy harvesting , 2009 .

[10]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[11]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[12]  Kevin M. Farinholt,et al.  Energy harvesting from a backpack instrumented with piezoelectric shoulder straps , 2007 .

[13]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[14]  Di Lin,et al.  Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystals , 2005 .

[15]  Zhong Lin Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. , 2007, Nano letters.

[16]  S. Banerjee,et al.  Large-scale synthesis of single-crystalline perovskite nanostructures. , 2003, Journal of the American Chemical Society.

[17]  Krzysztof Zaraska,et al.  Piezoelectric polymer films as power converters for human powered electronics , 2008, Microelectron. Reliab..

[18]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[19]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[20]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[21]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[22]  F. Baaijens,et al.  The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation , 1999 .

[23]  F. M. Sun,et al.  Non-linear Vibration and Dynamic Characteristic of Fish-like Robot Controlled by GMM Actuator , 2009 .

[24]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[25]  B. Aronov,et al.  Energy analysis of a piezoelectric body under nonuniform deformation. , 2003, The Journal of the Acoustical Society of America.

[26]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[27]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[28]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[29]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[30]  Jiashi Yang,et al.  Performance of a piezoelectric bimorph for scavenging vibration energy , 2005 .

[31]  Jinhui Song,et al.  Integrated nanogenerators in biofluid. , 2007, Nano letters.

[32]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[33]  C. Ballif,et al.  Fracture strength and Young's modulus of ZnO nanowires , 2006 .

[34]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[35]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[36]  W. Thomson Theory of vibration with applications , 1965 .

[37]  R. Cook,et al.  Advanced Mechanics of Materials , 1985 .

[38]  J. A. Hoffer,et al.  Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort , 2008, Science.

[39]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[40]  Zhong Lin Wang,et al.  Self-powered nanotech. , 2008, Scientific American.

[41]  Yicheng Lu,et al.  In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates , 2008 .

[42]  Arthur D Kuo Harvesting Energy by Improving the Economy of Human Walking , 2005, Science.