60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results

The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly reports recent work in the 60-GHz radio. Aspects addressed in this paper include global regulatory and standardization, justification of using the 60-GHz bands, 60-GHz consumer electronics applications, radio system concept, 60-GHz propagation and antennas, and key issues in system design. Some new simulation results are also given. Potentials and problems are explained in detail.

[1]  D. Davis,et al.  Performance of Slotted ALOHA Random Access with Delay Capture and Randomized Time of Arrival , 1980, IEEE Trans. Commun..

[2]  Robert A. Scholtz,et al.  Multiple access with time-hopping impulse modulation , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[3]  Marc Moeneclaey,et al.  BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise , 1995, IEEE Trans. Commun..

[4]  B. Adelseck,et al.  GaAs MMIC based components and frontends for millimeterwave communication and sensor systems , 1995, IEEE NTC,Conference Proceedings Microwave Systems Conference.

[5]  R. L. Van Tuyl Unlicensed millimeter wave communications. A new opportunity for MMIC technology at 60 GHz , 1996 .

[6]  R. Van Tuyl Unlicensed millimeter wave communications. A new opportunity for MMIC technology at 60 GHz , 1996, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium. 18th Annual Technical Digest 1996.

[7]  Kyungwhoon Cheun Optimum arrival-time distribution for delay capture in spread-spectrum packet radio networks , 1997 .

[8]  G. E. Athanasiadou,et al.  Investigating the effects of antenna directivity on wireless indoor communication at 60 GHz , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[9]  Davide Dardari,et al.  High-speed indoor wireless communications at 60 GHz with coded OFDM , 1999, IEEE Trans. Commun..

[10]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[11]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[12]  Pfm Peter Smulders,et al.  Application of five-sector beam antenna for 60 GHz wireless LAN , 2002 .

[13]  P.F.M. Smulders,et al.  Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions , 2002, IEEE Commun. Mag..

[14]  D. C. Streit,et al.  GaAs Components for 60 GHz Wireless Communication Applications , 2002 .

[15]  R. Brodersen,et al.  Design of CMOS for 60 GHz Applications , 2003 .

[16]  T. Itoh,et al.  A 60 GHz integrated antenna array for high-speed digital beamforming applications , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[17]  Andreas G. Siamarou Broadband wireless local-area networks at millimeter waves around 60 GHz , 2003 .

[18]  P. Constantinou,et al.  Indoor channel measurements and characterization at 60 GHz for wireless local area network applications , 2004, IEEE Transactions on Antennas and Propagation.

[19]  G. E. Zein,et al.  Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel , 2004, IEEE Transactions on Wireless Communications.

[20]  Ali M. Niknejad,et al.  Design considerations for 60 GHz CMOS radios , 2004, IEEE Communications Magazine.

[21]  Rumi Chunara,et al.  Phased array systems in silicon , 2004, IEEE Communications Magazine.

[22]  S.K. Reynolds,et al.  A 60-GHz superheterodyne downconversion mixer in silicon-germanium bipolar technology , 2004, IEEE Journal of Solid-State Circuits.

[23]  B. Floyd,et al.  60GHz transceiver circuits in SiGe bipolar technology , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[24]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[25]  K. Sarabandi,et al.  A millimeter-wave scaled measurement system for wireless channel characterization , 2004, IEEE Transactions on Microwave Theory and Techniques.

[26]  Ram Ramanathan,et al.  Ad hoc networking with directional antennas: a complete system solution , 2004, IEEE Journal on Selected Areas in Communications.

[27]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[28]  F. Korndorfer,et al.  60 GHz transceiver circuits in SiGe:C BiCMOS technology , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[29]  Robert C. Qiu,et al.  Guest Editorial Special Section on Ultra-Wideband Wireless Communications - A New Horizon , 2005, IEEE Trans. Veh. Technol..

[30]  Xiangqun Qiu,et al.  Reliability and availability assessment of storage area network extension solutions , 2005, IEEE Communications Magazine.

[31]  L. Clavier,et al.  Transposition of a baseband UWB signal at 60 GHz for high data rate indoor WLAN , 2005, IEEE Microwave and Wireless Components Letters.

[32]  S.E. Gunnarsson,et al.  Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology , 2005, IEEE Journal of Solid-State Circuits.

[33]  Thomas Zwick,et al.  Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel , 2005, IEEE Transactions on Vehicular Technology.

[34]  H. Hashemi,et al.  A 24-GHz SiGe phased-array receiver-LO phase-shifting approach , 2005, IEEE Transactions on Microwave Theory and Techniques.

[35]  Huaping Liu,et al.  Ultra-wideband for multiple access communications , 2005, IEEE Communications Magazine.

[36]  B. Gaucher,et al.  SiGe bipolar transceiver circuits operating at 60 GHz , 2005, IEEE Journal of Solid-State Circuits.

[37]  Walter Hirt,et al.  Uncoordinated rate-division multiple-access scheme for pulsed UWB signals , 2005, IEEE Transactions on Vehicular Technology.

[38]  A. Hajimiri,et al.  A fully integrated 24-GHz phased-array transmitter in CMOS , 2005, IEEE Journal of Solid-State Circuits.

[39]  Andreas F. Molisch,et al.  Guest Editorial Ultra-Wideband Wireless Communications— Theory and Applications , 2006 .

[40]  Efficient broadcasting in ad hoc wireless networks using directional antennas , 2006, IEEE Transactions on Parallel and Distributed Systems.

[41]  P. Sen,et al.  Si-based 60GHz 2X Subharmonic Mixer for Multi-Gigabit Wireless Personal Area Network Application , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[42]  Sudeep Sarkar,et al.  Low Cost 60 GHz Gb/s Radio Development , 2006 .

[43]  B.M. Sadler,et al.  A UWB Radio Network Using Multiple Delay Capture Enabled by Time Reversal , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[44]  S.K. Moore,et al.  Cheap chips for next wireless frontier , 2006, IEEE Spectrum.

[45]  A. Boucouvalas EURASIP Journal on Wireless Communications and Networking Optical Wireless Communications EURASIP Journal on Wireless Communications and Networking Optical Wireless Communications , 2022 .