Grassmannians of Classical Buildings

Linear Algebra and Projective Geometry Buildings and Grassmannians Classical Grassmannians Polar and Half-Spin Grassmannians.

[1]  Mark Pankov Base subsets of polar Grassmannians , 2007, J. Comb. Theory, Ser. A.

[2]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[3]  Luigi A. Rosati,et al.  Buildings and the Geometry of Diagrams , 1986 .

[5]  Peter J. Cameron,et al.  Projective and Polar Spaces , 1992 .

[6]  M. Pankov Mappings of the Sets of Invariant Subspaces of Null Systems , 2004 .

[7]  M. Pankov Transformations of Grassmannians and automorphisms of classical groups , 2002 .

[8]  Bruce N. Cooperstein On the Generation of Dual Polar Spaces of Symplectic Type over Finite Fields , 1998, J. Comb. Theory, Ser. A.

[9]  B. Cooperstein Classical Subspaces of Symplectic Grassmannians , 2006 .

[10]  Hans Havlicek,et al.  On bijections that preserve complementarity of subspaces , 2005, Discret. Math..

[11]  H. Havlicek A generalization of Brauner''s theorem on linear mappings , 1994 .

[12]  P. Abramenko Twin buildings and applications to S-arithmetic groups , 1996 .

[13]  M. Pankov Chow's Theorem and Projective Polarities , 2002 .

[14]  Francis Buekenhout,et al.  On the foundations of polar geometry , 1974 .

[15]  H. Coxeter,et al.  The Geometric vein : the Coxeter Festschrift , 1981 .

[16]  Bruce N. Cooperstein Symplectic subspaces of symplectic Grassmannians , 2007, Eur. J. Comb..

[17]  Jonathan I. Hall,et al.  Geometric Hyperplanes of Non-embeddable Grassmannian , 1993, Eur. J. Comb..

[18]  I. James Some embeddings of projective spaces , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Wen-ling Huang Characterization of the Transformation Group of the Space of a Null System , 2001 .

[20]  Isomorphisms of Normed Linear Spaces , 1942 .

[21]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[22]  Bruce N. Cooperstein On the Generation of Dual Polar Spaces of Unitary Type Over Finite Fields , 1997, Eur. J. Comb..

[23]  Hans Havlicek,et al.  Chow's theorem for linear spaces , 1999, Discret. Math..

[24]  Luc Teirlinck,et al.  On Projective and Affine Hyperplanes , 1980, J. Comb. Theory, Ser. A.

[25]  M. Pankov Transformations of Grassmannians preserving the class of base subsets , 2004 .

[26]  P. Abramenko,et al.  On Opposition in Spherical Buildings and Twin Buildings , 2000 .

[27]  An Elementary Proof of the Fundamental Theorem of Projective Geometry (Dedicated to Alfred Frölicher) , 2002 .

[28]  Claude-Alain Faure,et al.  Morphisms of projective geometries and semilinear maps , 1994 .

[29]  J. Dieudonné,et al.  La géométrie des groupes classiques , 1963 .

[30]  J. Thas,et al.  Hyperplanes of dual polar spaces and the spin module , 1992 .

[31]  Antonio Pasini,et al.  Generating Symplectic and Hermitian Dual Polar Spaces over Arbitrary Fields Nonisomorphic to F2 , 2007, Electron. J. Comb..

[32]  F. Buekenhout On the foundations of polar geometry, II , 1990 .

[33]  C. E. Rickart Isomorphic Groups of Linear Transformations, II , 1950 .

[34]  M. Pankov Geometrical mappings of Grassmannians of linear spaces satisfying the exchange axiom , 2006 .

[35]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[36]  Algebraic homogeneous spaces over fields of characteristic two , 1951 .

[37]  Peter J. Cameron,et al.  Dual polar spaces , 1982 .

[38]  E. Shult,et al.  Witt-Type Theorems for Grassmannians and Lie Incidence Geometries , 2005 .

[39]  Wei-Liang Chow,et al.  On the Geometry of Algebraic Homogeneous Spaces , 1949 .

[40]  M. Pankov,et al.  GEOMETRY OF POLAR GRASSMANN SPACES , 2006 .

[41]  Paul B. Garrett,et al.  Buildings and Classical Groups , 1997 .

[42]  Rieuwert J. Blok The generating rank of the symplectic grassmannians: Hyperbolic and isotropic geometry , 2007, Eur. J. Comb..

[43]  Jean Alexandre Dieudonné,et al.  On the automorphisms of the classical groups , 1951 .

[44]  A. Cohen Chapter 12 – Point-Line Spaces Related to Buildings , 1995 .

[45]  Hendrik Van Maldeghem,et al.  Intersections of apartments , 2008, J. Comb. Theory, Ser. A.

[46]  Diameter preserving surjections in the geometry of matrices , 2008, 1304.1345.